Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 21(14): 1449-1456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293168

RESUMO

Chelate-assisted phytoextraction is an attractive strategy to remove toxic metals from soil. However, there is lack of an effective and sustainable chelating agent. In this study, 11 kinds of fruit residue were extracted and selected to combine with N, N-bis (carboxymethyl) glutamic acid (GLDA) (0.7%) and tea saponin (4%) for the compounded activation agent (CAA), and its enhancement on Pb phytoextraction by Sedum alfredii was further evaluated by pot experiment. Among 11 fruit residue extracts, lemon residue showed the highest ability (34.7%) to extract Pb from soil. Through combining with GLDA (0.7%) and tea saponin (4%) at the optimal volume ratio of 15:2.5:2.5, the CAA removed Pb most effectively (57.1%) from soil and increased the solubility of three Pb mineral (PbS, PbCO3 and PbSO4) by 8.7-56.4 times. In pot experiment, the addition of high dosage (15 mL) CAA increased the biomass of S. alfredii by 52% and doubled the Pb accumulation. In addition, CAA-assisted phytoextraction also increased both water-soluble and acid-soluble Pb in soil, while reduced the proportion of the immobile Pb (oxidizable and residual). Generally, the compounded activation agent derived from lemon residue could be considered as-a promising enhancer for Pb phytoextraction.


Assuntos
Metais Pesados , Sedum , Poluentes do Solo , Biodegradação Ambiental , Quelantes , Frutas , Solo
2.
Sci Total Environ ; 643: 357-366, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940447

RESUMO

Elevated CO2 and use of endophytic microorganisms have been considered as efficient and novel ways to improve phytoextraction efficiency. However, the interactive effects of elevated CO2 and endophytes on hyperaccumulator is poorly understood. In this study, a hydroponics experiment was conducted to investigate the combined effect of elevated CO2 (eCO2) and inoculation with endophyte SaMR12 (ES) on the photosynthetic characteristics and cadmium (Cd) accumulation in hyperaccumulator Sedum alfredii. The results showed that eCO2 × ES interaction promoted the growth of S. alfredii, shoot and root biomass net increment were increased by 264.7 and 392.3%, respectively, as compared with plants grown in ambient CO2 (aCO2). The interaction of eCO2 and ES significantly (P < 0.05) increased chlorophyll content (53.2%), Pn (111.6%), Pnmax (59.8%), AQY (65.1%), and Lsp (28.8%), but reduced Gs, Tr, Rd, and Lcp. Increased photosynthetic efficiency was associated with higher activities of rubisco, Ca2+-ATPase, and Mg2+-ATPase, and linked with over-expression of two photosystem related genes (SaPsbS and SaLhcb2). PS II activities were significantly (P < 0.05) enhanced with Fv/Fm and Φ(II) increased by 12.3 and 13.0%, respectively, compared with plants grown in aCO2. In addition, the net uptake of Cd in the shoot and root tissue of S. alfredii grown in eCO2 × ES treatment was increased by 260.7 and 434.9%, respectively, due to increased expression of SaHMA2 and SaCAX2 Cd transporter genes. Our results suggest that eCO2 × ES can promote the growth of S. alfredii due to increased photosynthetic efficiency, and improve Cd accumulation and showed considerable potential of improving the phytoextraction ability of Cd by S. alfredii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA