Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Biochem ; 119(2): 1538-1547, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28777475

RESUMO

The current study was conducted for investigating the mechanism by which GIT2 gene deletion affects the functional recovery and chondrocyte differentiation in rats with rheumatoid arthritis (RA). Thirty-two rats were randomly divided into normal, model, GIT2 gene knockout (GIT2-KO), and model + GIT2-KO groups. Hematoxylin-eosin (HE) staining was performed for the observation of synovial tissues. Immunohistochemistry examinations were conducted to determine type II collagen expression as well as identify chondrocyte differentiation. qRT-PCR and Western blotting techniques were adopted in order to expressions of interleukin-1ß (1L-1ß), tumor necrosis factor-α (TNF-α), Aggrecan, and Sry-related HMG box 9 (Sox9). A tape measure and Vernier caliper were used to measure the degree of swelling. Compared with synovial tissues in the model group, those in the model + GIT2-KO group, were thicker and comprised of a mass of inflammatory cells (P < 0.05). Compared with the model group, the type II collagen expressions of the cartilage tissues of the rats decreased in the model + GIT2-KO group (P < 0.05). In terms of the degree of swelling in cartilage tissues, the model group displayed a lesser degree of swelling than in that of the model + GIT2-KO group (P < 0.05). When compared with the model + GIT2-KO group, the mRNA expressions of 1L-1ß, TNF-α, Aggrecan, Sox9 and the relevant protein expressions were lower in the model group (all P < 0.05). GIT2 gene deletion might weaken chondrocyte differentiation in rats with RA, as a result acting to ultimately prolong the functional recovery of RA.


Assuntos
Artrite Reumatoide/genética , Proteínas de Ciclo Celular/genética , Condrócitos/citologia , Deleção de Genes , Fosfoproteínas/genética , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Fosfoproteínas/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Int Immunopharmacol ; 140: 112784, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39083928

RESUMO

Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Nicotina , Fumaça , Remodelação Vascular , Humanos , Animais , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Fumaça/efeitos adversos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Nicotina/efeitos adversos , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Apoptose , Proliferação de Células , Movimento Celular , Acroleína , Nicotiana , Matriz Extracelular/metabolismo , Fumar/efeitos adversos , Produtos do Tabaco/efeitos adversos
3.
J Huazhong Univ Sci Technolog Med Sci ; 33(4): 511-519, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23904370

RESUMO

Angiogenic gene therapy and cell-based therapy for peripheral arterial disease(PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells(MSCs) transplantation with ex vivo human hepatocyte growth factor(HGF) gene transfer was more therapeutically efficient than the MSCs therapy alone in a rat model of hindlimb ischemia. One week after establishing hindlimb ischemia models, Sprague-Dawley(SD) rats were randomized to receive HGF gene-modified MSCs transplantation(HGF-MSC group), untreated MSCs transplantation (MSC group), or PBS injection(PBS group), respectively. Three weeks after injection, angiogenesis was significantly induced by both MSCs and HGF-MSCs transplantation, and capillary density was the highest in the HGF-MSC group. The number of transplanted cell-derived endothelial cells was greater in HGF-MSC group than in MSC group after one week treatment. The expression of angiogenic cytokines such as HGF and VEGF in local ischemic muscles was more abundant in HGF-MSC group than in the other two groups. In vitro, the conditioned media obtained from HGF-MSCs cultures exerted proproliferative and promigratory effects on endothelial cells. It is concluded that HGF gene-modified MSCs transplantation therapy may induce more potent angiogenesis than the MSCs therapy alone. Engraftment of MSCs combined with angiogenic gene delivery may be a promising therapeutic strategy for the treatment of severe PAD.


Assuntos
Medula Óssea/metabolismo , Fator de Crescimento de Hepatócito/genética , Membro Posterior/patologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/genética , Animais , Medula Óssea/patologia , Transplante de Medula Óssea , Células Cultivadas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/patologia , Ratos
4.
Front Pharmacol ; 13: 813272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370645

RESUMO

Background and Purpose: Atrial metabolic remodeling plays a critical role in the pathogenesis of atrial fibrillation (AF). Sirtuin3 (Sirt3) plays an important role in energy homeostasis. However, the effect of Sirt3 agonist Honokiol (HL) on AF is unclear. Therefore, the aim of this study is to determine the effect of HL on atrial metabolic remodeling in AF and to explore possible mechanisms. Experimental Approach: irt3 and glycogen deposition in left atria of AF patients were examined. Twenty-one rabbits were divided into sham, P (pacing for 3 weeks), P + H treatment (honokiol injected with pacing for 3 weeks). The HL-1 cells were subjected to rapid pacing at 5 Hz for 24 h, in the presence or absence of HL and overexpression or siRNA of Sirt3 by transfection. Metabolic factors, circulating metabolites, atrial electrophysiology, ATP level, and glycogens deposition were detected. Acetylated protein and activity of its enzymes were detected. Key Results: Sirt3 was significantly down-regulated in AF patients and rabbit/HL-1cell model, resulting in the abnormal expression of its downstream metabolic key factors, which were significantly restored by HL. Meanwhile, AF induced an increase of the acetylation level in long-chain acyl-CoA dehydrogenase (LCAD), AceCS2 and GDH, following decreasing of activity of it enzymes, resulting in abnormal alterations of metabolites and reducing of ATP, which was inhibited by HL. The Sirt3 could regulate acetylated modification of key metabolic enzymes, and the increase of Sirt3 rescued AF induced atrial metabolic remodeling. Conclusion and Implications: HL inhibited atrial metabolic remodeling in AF via the Sirt3 pathway. The present study may provide a novel therapeutical strategy for AF.

5.
Medicine (Baltimore) ; 99(5): e18731, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32000376

RESUMO

Miscarriage is the spontaneous loss of a clinically established intrauterine pregnancy before the fetus has reached viability. In order to compare the performance of traditional G banding karyotyping with next-generation sequencing (NGS) for detecting common trisomies in products of conception (POC). Chromosome abnormalities were detected by high-resolution G banding karyotyping and NGS. A total of 48 miscarriage samples, including 20 samples without karyotype result and 28 with karyotype results were selected and coded for analysis by NGS. The multiplex PCR analysis of maternal and miscarriage DNA for single nucleotide polymorphism (SNP) markers were used to simultaneously monitor maternal cell contamination (MCC), chromosomal status, and sex of the miscarriage tissue. NGS detection results of 21 chromosome abnormalities were consisted with that in karyotyping examination. These chromosome abnormalities samples included 9 chromosome 16 trisomies, 3 chromosome 22 trisomies, 2 chromosome 7 trisomies, 2 chromosome 18 trisomies, 1 chromosome 4 trisomies, one chromosome 10 trisomies, 1 chromosome 13 trisomies, 1 chromosome 15 trisomies and 1 sex chromosomal aneuploidies (45, X). Meanwhile, NGS analysis of seven chromosome normalities was adapted to the karyotyping examination. Therefore, NGS combined with multiplex PCR is an effective method to test trisomies in POC. The results mentioned above will contribute to a detailed understanding of the first-trimester spontaneous miscarriages.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Trissomia/diagnóstico , Aborto Espontâneo/genética , Feminino , Humanos , Gravidez
6.
Chin Med J (Engl) ; 121(4): 347-54, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18304469

RESUMO

BACKGROUND: Cell transplantation for myocardial repair is limited by early cell death. Gene therapy with human growth hormone (hGH) has been shown to promote angiogenesis and attenuate apoptosis in the experimental animal. This study was conducted to explore the effects of myoblast-based hGH gene therapy on heart function restoration and angiogenesis after myocardial infarction, and to compare the differences between myoblast-based hGH gene therapy and myoblast therapy. METHODS: Myoblasts were isolated from several SD rats, cultured, purified, and transfected with plasmid pLghGHSN and pLgGFPSN. Radioimmunoassay (RIA) was used to detect the expression of hGH in these myoblasts. SD rats underwent the ligation of the left anterior descending coronary artery so as to establish a heart ischemia model. Thirty surviving rats that underwent ligation were randomly divided into 3 equal groups 2 weeks after left coronary artery occlusion: pLghGHSN group received myoblast infected with hGH gene transplantation; pLgGFPSN group received myoblast infected with GFP gene transplantation; control group: received cultured medium only. Four weeks after the injection the surviving rat underwent evaluation of cardiac function by echocardiography. The rats were killed and ventricular samples were undergone immunohistochemistry with hematoxylin-eosin and factor VIII. Cryosection was analyzed by fluorescence microscopy to examine the expression of green fluorescent protein. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of vascular endothelial growth factor (VEGF), bax and Bcl-2. hGH expression in myocardium was examined by Western blot. RESULTS: Myoblast can be successfully isolated, cultured and transfected. The expression of hGH in transfected myoblast was demonstrated with RIA. Four weeks after therapy, the cardiac function was improved significantly in pLghGHSN group and pLgGFPSN group. Fractional shortening (FS) and ejection fraction (EF) in pLghGHSN group were elevated significantly compared with pLgGFPSN group and control group after therapy (FS: 36.9+/-5.3 vs 29.5+/-3.5, 21.8+/-2.9; EF: 56.9+/-4.3 vs 47.1+/-3.6, 38.4+/-4.8, P<0.05). Left ventricular end-diastolic dimension (LVEDD) and heart infracted size in pLghGHSN group were decreased significantly compared with pLgGFPSN group and control group after therapy (LVEDD: 5.9+/-0.3 vs 6.8+/-0.2, 8.6+/-0.3; heart infracted size: (34.5+/-4.2)% vs (40.0+/-3.9)%, (46.1+/-3.8)%, P<0.05); Green fluorescence was detected in cryosection of pLgGFPSN group. The capillary density of the pLgGFPSN group was significantly greater than those of the pLghGHSN group and control group (P<0.05). The mRNA expression of VEGF and Bcl-2/bax in pLghGHSN group was higher than in pLgGFPSN group or control group (P<0.05). The expression of hGH gene in myocardium tissue can be detected by Western blot assay in pLghGHSN group. CONCLUSIONS: Transplantation of heart cells transfected with hGH induced greater angiogenesis and effect of antiapoptosis than transplantation of cells transfected with GFP. Combined GH gene transfer and cell transplantation provided an effective strategy for improving postinfarction ventricular function.


Assuntos
Terapia Genética , Hormônio do Crescimento Humano/genética , Mioblastos Esqueléticos/transplante , Infarto do Miocárdio/terapia , Função Ventricular , Animais , Western Blotting , Células Cultivadas , Ecocardiografia , Hormônio do Crescimento Humano/sangue , Imuno-Histoquímica , Infarto do Miocárdio/fisiopatologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Transfecção
7.
Chin Med J (Engl) ; 123(24): 3626-2633, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22166642

RESUMO

BACKGROUND: Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats. METHODS: Ligation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n = 6) and MI-GFP group (n = 6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n = 6) and S-GFP group (n = 6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting. RESULTS: Primary rat myoblasts were retrovirally transduced to secrete rhIGF-1 and tissue-engineered into implantable BAMs containing parallel arrays of postmitotic myofibers. In vitro, they secreted consistent levels of hIGF (0.4 - 1.2 µg×BAM(-1)×d(-1)). When implanted into syngeneic rat, IGF-BAMs secreted and delivered rhIGF. Four weeks after therapy, the hemodynamics was improved significantly in MI rats treated with IGF-BAMs compared with those treated with GFP-BAMs. The levels of serum IGF-1 were increased significantly in both MI and sham rats treated with IGF-BAM. The mRNA expression of bax was lower and Bcl-2 expression was higher in MI-IGF group than MI-GFP group (P < 0.05). Western blotting assay showed TNF-α and caspase 3 expression was lower in MI-IGF group than MI-GFP group after therapy. CONCLUSIONS: rhIGF-1 significantly improves left ventricular function and suppresses cardiomyocyte apoptosis in rats with chronic heart failure. Genetically modified tissue-engineered BAMs provide a method delivering recombinant protein for the treatment of heart failure.


Assuntos
Apoptose , Terapia Genética , Insuficiência Cardíaca/terapia , Fator de Crescimento Insulin-Like I/genética , Mioblastos Esqueléticos/metabolismo , Miócitos Cardíacos/patologia , Engenharia Tecidual , Animais , Caspase 3/análise , Desmina/análise , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Fator de Crescimento Insulin-Like I/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Retroviridae/genética , Fator de Necrose Tumoral alfa/análise , Função Ventricular Esquerda
8.
Chin Med J (Engl) ; 122(19): 2352-9, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20079139

RESUMO

BACKGROUND: Experimental studies and preliminary clinical studies have suggested that growth hormone (GH) treatment may improve cardiovascular parameters in chronic heart failure (CHF). Recombinant human GH (rhGH) has been delivered by a recombinant protein, by plasmid DNA, and by genetically engineered cells with different pharmacokinetic and physiological properties. The present study aimed to examine a new method for delivery of rhGH using genetically modified bioartificial muscles (BAMs), and investigate whether the rhGH delivered by this technique improves left ventricular (LV) function in rats with CHF. METHODS: Primary skeletal myoblasts were isolated from several Sprague-Dawley (SD) rats, cultured, purified, and retrovirally transduced to synthesize and secrete human rhGH, and tissue-engineered into implantable BAMs. Ligation of the left coronary artery or sham operation was performed. The rats that underwent ligation were randomly assigned to 2 groups: CHF control group (n = 6) and CHF treatment group (n = 6). The CHF control group received non-rhGH-secreting BAM (GFP-BAMs) transplantation, and the CHF treatment group received rhGH-secreting BAM (GH-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: sham control group (n = 6) and sham treatment group (n = 6). The sham control group underwent GFP-BAM transplantation, and the sham treatment group underwent GH-BAM transplantation. GH-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats with ligation of the left coronary artery or sham operation was performed. Eight weeks after the treatment, echocardiography was performed. hGH, insulin-like growth factor-1 (IGF-1) and TNF-alpha levels in rat serum were measured by radioimmunoassay and ELISA, and then the rats were killed and ventricular samples were subjected to immunohistochemistry. RESULTS: Primary rat myoblasts were retrovirally transduced to secrete rhGH and tissue-engineered into implantable BAMs containing parallel arrays of postmitotic myofibers. In vitro, they secreted 1 to 2 microg of bioactive rhGH per day. When implanted into syngeneic rat, GH-BAMs secreted and delivered rhGH. Eight weeks after therapy, LV ejection fraction (EF) and fractional shortening (FS) were significantly higher in CHF rats treated with GH-BAMs than in those treated with GFP-BAMs ((65.0 +/- 6.5)% vs (48.1 +/- 6.8)%, P < 0.05), ((41.3 +/- 7.4)% vs (26.5 +/- 7.1)%, P < 0.05). LV end-diastolic dimension (LVEDD) was significantly lower in CHF rats treated with GH-BAM than in CHF rats treated with GFP-BAM (P < 0.05). The levels of serum GH and IGF-1 were increased significantly in both CHF and sham rats treated with GH-BAM. The level of serum TNF-alpha decreased more significantly in the CHF treatment group than in the CHF control group. CONCLUSIONS: rhGH significantly improves LV function and prevents cardiac remodeling in rats with CHF. Genetically modified tissue-engineered bioartificial muscle provides a method delivering recombinant protein for the treatment of heart failure.


Assuntos
Órgãos Bioartificiais , Hormônio do Crescimento Humano/administração & dosagem , Mioblastos Esqueléticos/metabolismo , Infarto do Miocárdio/terapia , Engenharia Tecidual , Função Ventricular Esquerda , Animais , Ecocardiografia , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA