Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063214

RESUMO

Erianin, a bibenzyl compound found in dendrobium extract, has demonstrated broad anticancer activity. However, its mechanism of action in gastric cancer (GC) remains poorly understood. LKB1 is a tumor-suppressor gene, and its mutation is an important driver of various cancers. Yet some studies have reported contradictory findings. In this study, we combined bioinformatics and in vitro and in vivo experiments to investigate the effect and potential mechanism of Erianin in the treatment of GC. The results show that LKB1 was highly expressed in patients' tumor tissues and GC cells, and it was associated with poor patient prognosis. Erianin could promote GC cell apoptosis and inhibit the scratch repair, migration, invasion, and epithelial-mesenchymal transition (EMT) characteristics. Erianin dose-dependently inhibited the expression of LKB1, SIK2, SIK3, and PARD3 but had no significant effect on SIK1. Erianin also inhibited tumor growth in CDX mice model. Unexpectedly, 5-FU also exhibited a certain inhibitory effect on LKB1. The combination of Erianin and 5-FU significantly improved the anti-tumor efficacy of 5-FU in the growth of GC cells and xenograft mouse models. In summary, Erianin is a potential anti-GC compound that can inhibit GC growth and EMT properties by targeting the LKB1-SIK2/3-PARD3-signaling axis. The synergistic effect of Erianin and 5-FU suggests a promising therapeutic strategy for GC treatment.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Bibenzilas , Proliferação de Células , Dendrobium , Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Dendrobium/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Animais , Bibenzilas/farmacologia , Bibenzilas/química , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fenol
2.
Talanta ; 271: 125630, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237280

RESUMO

Developing the rapid, specific, and sensitive tumor marker NDKA biosensor has become an urgent need in the field of early diagnosis of colorectal cancer (CRC). Surface-enhanced Raman spectroscopy (SERS) with the advantages of high sensitivity, high resolution as well as providing sample fingerprint, enables rapid and sensitive detection of tumor markers. However, many SERS biosensors rely on boosting the quantity of Raman reporter molecules on individual nanoparticle surfaces, which can result in nanoparticle agglomeration, diminishing the stability and sensitivity of NDKA detection. Here, we proposed an immune-like sandwich multiple hotspots SERS biosensor for highly sensitive and stable analysis of NDKA in serum based on molecularly imprinted polymers and NDKA antibody. The SERS biosensor employs an array of gold nanoparticles, which are coated with a biocompatible polydopamine molecularly imprinted polymer as a substrate to specifically capture NDKA. Then the biosensor detects NDKA through Raman signals as a result of the specific binding of NDKA to the SERS nanotag affixed to the capture substrate along with the formation of multiple hotspots. This SERS biosensor not only avoids the aggregation of nanoparticles but also presents a solution to the obstacles encountered in immune strategies for certain proteins lacking multiple antibody or aptamer binding sites. Furthermore, the practical application of the SERS biosensor is validated by the detection of NDKA in serum with the lower limit of detection (LOD) of 0.25 pg/mL, meanwhile can detect NDKA of 10 ng/mL in mixed proteins solution, illustrating high sensitivity and specificity. This immune-like sandwich multiple hotspots biosensor makes it quite useful for the early detection of CRC and also provides new ideas for cancer biomarker sensing strategy in the future.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Detecção Precoce de Câncer , Biomarcadores Tumorais , Proteínas , Anticorpos , Técnicas Biossensoriais/métodos
3.
Talanta ; 258: 124461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963151

RESUMO

Early diagnosis of colorectal cancer can significantly improve the overall survival rate of patients, thus selective and sensitive detection of biomarkers in serum samples is vital for early detection and dynamic monitoring of cancer. Nucleoside diphosphate kinase NM23-H2 (NDKB) is an important biomarker and therapeutic target for the diagnosis of colorectal cancer (CRC). Here, a label-free and ultrasensitive biosensor for NDKB protein markers is presented for the first time, combining the characteristic capture selectivity of molecularly imprinted polymers (MIPs) and the ultrasensitivity of surface-enhanced Raman Spectroscopy (SERS) technique. The imprinted cavity serves as the only channel for Raman reporter to approach the SERS substrate, providing highly complementary non-covalent binding sites that selectively capture the target protein based on ionic, hydrogen bonding or hydrophobic interactions. Specific recognition of the NDKB protein will perfectly fill the imprinted cavity, which makes it difficult for the Raman reporter to get close to the SERS substrate, and the Raman signal decreases significantly, while the proteins of other structural sizes can not match the imprinted cavity. Through the change of the Raman signal, the proposed biosensor can realize the ultra-sensitive detection of NDKB, and the limit of detection (LOD) is 0.82 pg/mL. Compared with the traditional immunoassay technology, this combined approach with the advantages of low cost, fast response, high sensitivity and selectivity, provides clinical application potential for the early diagnosis of CRC.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , Impressão Molecular , Humanos , Biomarcadores Tumorais , Impressão Molecular/métodos , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Proteínas , Neoplasias Colorretais/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA