Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 186(5): 999-1012.e20, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764292

RESUMO

Adenosine-to-inosine RNA editing has been proposed to be involved in a bacterial anti-phage defense system called RADAR. RADAR contains an adenosine triphosphatase (RdrA) and an adenosine deaminase (RdrB). Here, we report cryo-EM structures of RdrA, RdrB, and currently identified RdrA-RdrB complexes in the presence or absence of RNA and ATP. RdrB assembles into a dodecameric cage with catalytic pockets facing outward, while RdrA adopts both autoinhibited tetradecameric and activation-competent heptameric rings. Structural and functional data suggest a model in which RNA is loaded through the bottom section of the RdrA ring and translocated along its inner channel, a process likely coupled with ATP-binding status. Intriguingly, up to twelve RdrA rings can dock one RdrB cage with precise alignments between deaminase catalytic pockets and RNA-translocation channels, indicative of enzymatic coupling of RNA translocation and deamination. Our data uncover an interesting mechanism of enzymatic coupling and anti-phage defense through supramolecular assemblies.


Assuntos
Trifosfato de Adenosina , RNA , Adenosina Desaminase/genética
2.
Cell ; 173(5): 1231-1243.e16, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29731171

RESUMO

Ubiquitination constitutes one of the most important signaling mechanisms in eukaryotes. Conventional ubiquitination is catalyzed by the universally conserved E1-E2-E3 three-enzyme cascade in an ATP-dependent manner. The newly identified SidE family effectors of the pathogen Legionella pneumophila ubiquitinate several human proteins by a different mechanism without engaging any of the conventional ubiquitination machinery. We now report the crystal structures of SidE alone and in complex with ubiquitin, NAD, and ADP-ribose, thereby capturing different conformations of SidE before and after ubiquitin and ligand binding. The structures of ubiquitin bound to both mART and PDE domains reveal several unique features of the two reaction steps catalyzed by SidE. Further, the structural and biochemical results demonstrate that SidE family members do not recognize specific structural folds of the substrate proteins. Our studies provide both structural explanations for the functional observations and new insights into the molecular mechanisms of this non-canonical ubiquitination machinery.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Diester Fosfórico Hidrolases/química , Ubiquitina/química , Proteínas de Bactérias/metabolismo , Biocatálise , Cristalografia por Raios X , Dimerização , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Ubiquitina/metabolismo , Ubiquitinação
3.
Mol Cell ; 81(13): 2823-2837.e9, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015248

RESUMO

DNA-induced liquid-liquid phase separation of cyclic GMP-AMP synthase (cGAS) triggers a potent response to detect pathogen infection and promote innate immune signaling. Whether and how pathogens manipulate cGAS-DNA condensation to mediate immune evasion is unknown. We report the identification of a structurally related viral tegument protein family, represented by ORF52 and VP22 from gamma- and alpha-herpesvirinae, respectively, that employs a conserved mechanism to restrict cGAS-DNA phase separation. ORF52/VP22 proteins accumulate into, and effectively disrupt, the pre-formed cGAS-DNA condensation both in vitro and in cells. The inhibition process is dependent on DNA-induced liquid-liquid phase separation of the viral protein rather than a direct interaction with cGAS. Moreover, highly abundant ORF52 proteins carried within viral particles are able to target cGAS-DNA phase separation in early infection stage. Our results define ORF52/VP22-type tegument proteins as a family of inhibitors targeting cGAS-DNA phase separation and demonstrate a mechanism for how viruses overcome innate immunity.


Assuntos
Alphaherpesvirinae , Betaherpesvirinae , DNA , Infecções por Herpesviridae , Evasão da Resposta Imune , Nucleotidiltransferases , Proteínas Estruturais Virais , Alphaherpesvirinae/química , Alphaherpesvirinae/genética , Alphaherpesvirinae/imunologia , Betaherpesvirinae/química , Betaherpesvirinae/genética , Betaherpesvirinae/imunologia , DNA/química , DNA/genética , DNA/imunologia , Células HEK293 , Células HeLa , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Humanos , Imunidade Inata , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
4.
Nature ; 612(7938): 170-176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265513

RESUMO

Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.


Assuntos
Microscopia Crioeletrônica , Fosfatos de Dinucleosídeos , Antagonistas do Ácido Fólico , Ácido Fólico , Nucleotídeos Cíclicos , Animais , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura
5.
Mol Cell ; 74(2): 296-309.e7, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30850331

RESUMO

Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural "off switches" for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2- and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different subtypes, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into anti-CRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/antagonistas & inibidores , DNA/química , Humanos , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética
6.
FASEB J ; 38(7): e23587, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568835

RESUMO

Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.


Assuntos
Mastite , Infecções Estafilocócicas , Feminino , Humanos , Ratos , Animais , Staphylococcus aureus/fisiologia , Proteômica , Ácido Araquidônico/metabolismo , Mastite/microbiologia , Mastite/patologia , Mastite/veterinária , Inflamação/metabolismo , Redes e Vias Metabólicas , Glândulas Mamárias Animais/metabolismo , Infecções Estafilocócicas/metabolismo
7.
Biochem Genet ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850375

RESUMO

The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.

8.
Theor Appl Genet ; 136(8): 177, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540294

RESUMO

KEY MESSAGE: Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.


Assuntos
Coloração Cromossômica , Oligonucleotídeos , Oligonucleotídeos/genética , Poaceae/genética , Triticum/genética , Cromossomos
9.
Proc Natl Acad Sci U S A ; 117(43): 26719-26727, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33033226

RESUMO

Viruses employ multiple strategies to inhibit host mRNA nuclear export. Distinct to the generally nonselective inhibition mechanisms, ORF10 from gammaherpesviruses inhibits mRNA export in a transcript-selective manner by interacting with Rae1 (RNA export 1) and Nup98 (nucleoporin 98). We now report the structure of ORF10 from MHV-68 (murine gammaherpesvirus 68) bound to the Rae1-Nup98 heterodimer, thereby revealing detailed intermolecular interactions. Structural and functional assays highlight that two highly conserved residues of ORF10, L60 and M413, play critical roles in both complex assembly and mRNA export inhibition. Interestingly, although ORF10 occupies the RNA-binding groove of Rae1-Nup98, the ORF10-Rae1-Nup98 ternary complex still maintains a comparable RNA-binding ability due to the ORF10-RNA direct interaction. Moreover, mutations on the RNA-binding surface of ORF10 disrupt its function of mRNA export inhibition. Our work demonstrates the molecular mechanism of ORF10-mediated selective inhibition and provides insights into the functions of Rae1-Nup98 in regulating host mRNA export.


Assuntos
Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Animais , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/química , Células Sf9 , Transativadores/química
10.
Ecotoxicol Environ Saf ; 263: 115290, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515969

RESUMO

Environmental exposure to hazardous materials causes enormous socioeconomic problems due to its deleterious impacts on human beings, agriculture and animal husbandry. As an important hazardous material, cadmium can promote uterine oxidative stress and inflammation, leading to reproductive toxicity. Antioxidants have been reported to attenuate the reproductive toxicity associated with cadmium exposure. In this study, we investigated the potential protective effect of procyanidin oligosaccharide B2 (PC-B2) and gut microbiota on uterine toxicity induced by cadmium exposure in rats. The results showed that the expression levels of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were reduced in utero. Proinflammatory cytokines (including tumor necrosis factor-α, interleukin-1ß and interleukin-6), the NLRP3 inflammasome, Caspase-1 and pro-IL-1ß were all involved in inflammatory-mediated uterine injury. PC-B2 prevented CdCl2-induced oxidative stress and inflammation in uterine tissue by increasing antioxidant enzymes and reducing proinflammatory cytokines. Additionally, PC-B2 significantly reduced cadmium deposition in the uterus, possibly through its significant increase in MT1, MT2, and MT3 mRNA expression. Interestingly, PC-B2 protected the uterus from CdCl2 damage by increasing the abundance of intestinal microbiota, promoting beneficial microbiota, and inhibiting harmful microbiota. This study provides novel mechanistic insights into the toxicity of environmental cadmium exposure and indicates that PC-B2 could be used in the prevention of cadmium exposure-induced uterine toxicity.


Assuntos
Microbioma Gastrointestinal , Proantocianidinas , Humanos , Feminino , Ratos , Animais , Cádmio/metabolismo , Proantocianidinas/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Inflamação/metabolismo , Citocinas/genética , Citocinas/metabolismo , Superóxido Dismutase/metabolismo , Útero
11.
Mol Med ; 28(1): 11, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093024

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common type of neurodegenerative disease in the contemporary era, and it is still clinically incurable. Eriodictyol, a natural flavonoid compound that is mainly present in citrus fruits and some Chinese herbal medicines, has been reported to exert anti-inflammatory, antioxidant, anticancer and neuroprotective effects. However, few studies have examined the anti-AD effect and molecular mechanism of eriodictyol. METHODS: APP/PS1 mice were treated with eriodictyol and the cognitive function of mice was assessed using behavioral tests. The level of amyloid-ß (Aß) aggregation and hyperphosphorylation of Tau in the mouse brain were detected by preforming a histological analysis and Western blotting. HT-22 cells induced by amyloid-ß peptide (1-42) (Aß1-42) oligomers were treated with eriodictyol, after which cell viability was determined and the production of p-Tau was tested using Western blotting. Then, the characteristics of ferroptosis, including iron aggregation, lipid peroxidation and the expression of glutathione peroxidase type 4 (GPX4), were determined both in vivo and in vitro using Fe straining, Western blotting and qPCR assays. Additionally, the expression level of vitamin D receptor (VDR) and the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway were tested using Western blotting and qPCR assays. Afterward, HT-22 cells with VDR knockout were used to explore the potential mechanisms, and the relationship between VDR and Nrf2 was further assessed by performing a coimmunoprecipitation assay and bioinformatics analysis. RESULTS: Eriodictyol obviously ameliorated cognitive deficits in APP/PS1 mice, and suppressed Aß aggregation and Tau phosphorylation in the brains of APP/PS1 mice. Moreover, eriodictyol inhibited Tau hyperphosphorylation and neurotoxicity in HT-22 cells induced by Aß1-42 oligomer. Furthermore, eriodictyol exerted an antiferroptosis effect both in vivo and in vitro, and its mechanism may be associated with the activation of the Nrf2/HO-1 signaling pathway. Additionally, further experiments explained that the activation of Nrf2/HO-1 signaling pathway by eriodictyol treatment mediated by VDR. CONCLUSIONS: Eriodictyol alleviated memory impairment and AD-like pathological changes by activating the Nrf2/HO-1 signaling pathway through a mechanism mediated by VDR, which provides a new possibility for the treatment of AD.


Assuntos
Ferroptose/efeitos dos fármacos , Flavanonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Calcitriol/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Biomarcadores , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Flavanonas/química , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fosforilação , Agregação Patológica de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas tau/metabolismo
12.
J Clin Pharm Ther ; 47(12): 2176-2181, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411584

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Diabetic ketoacidosis (DKA) may occur during asparaginase use. However, limited by the study population, the association between asparaginase and DKA has not been elucidated. The purpose of this study was to determine the potential association between asparaginase and DKA and analyse related clinical characteristics and possible risk factor. METHODS: Disproportionality analysis with the reporting odd ratio (ROR) was used to detect the adverse reaction signals of asparaginase-associated DKA in Food and Drug Administration Adverse Event Reporting System (FAERS). A literature review was conducted to further analyse clinical characteristics, possible risk factor and something noteworthy in asparaginase-associated DKA. RESULTS AND DISCUSSION: A total of 12 reports of DKA associated with l-asparaginase (l-asp) and 6 reports associated with pegaspargase (PEG-asp) were extracted in FAERS, more than 50% of the cases were classified as serious adverse events. DKA was a positive signal of l-asp (ROR = 2.397, 95% CI 1.360-4.226), while not closely related to the use of PEG-asp (ROR = 1.602, 95% CI 0.719-3.570). Searched in PubMed, Embase and Web of Science, a total of eight patients were collected. The patients were mainly adolescent patients, aged between 11 and 25 years old with a median age of 16 years. Drug dosage form distribution is unbalanced, 7 patients received l-asp and only 1 received PEG-asp. WHAT IS NEW AND CONCLUSIONS: The ROR of KDA caused by l-asp was statistically significant, but there was not a statistical association for DKA caused by PEG-asp. Asparaginase dosage form may affect the occurrence of DKA, but further research is needed.


Assuntos
Diabetes Mellitus , Cetoacidose Diabética , Adolescente , Estados Unidos , Humanos , Criança , Adulto Jovem , Adulto , Asparaginase/efeitos adversos , Fatores de Risco , United States Food and Drug Administration , Razão de Chances
13.
Biomed Chromatogr ; 34(8): e4857, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32307730

RESUMO

Because of its unpredictable side effects and efficacy, the anticancer drug docetaxel (DTX) requires improved characterisation of its pharmacokinetic profiles through population pharmacokinetic studies. A sensitive and rugged LC-MS/MS method for the detection of DTX in human plasma was developed and optimised using paclitaxel as an internal standard (IS). The plasma samples underwent rapid extraction using hybrid solid-phase extraction-protein precipitation. The analyte and IS were separated with an isocratic system on a Zorbax Eclipse Plus C18 column using water containing 0.05% acetic acid along with 20 µM of sodium acetate and methanol (30/70, v/v) as the mobile phase. Quantification was performed using a triple quadrupole mass spectrometer through multiple reaction monitoring in positive mode, using the m/z 830.3 → 548.8 and m/z 876.3 → 307.7 transitions for DTX and paclitaxel, respectively. The range of the calibration curve was 1-500 ng/mL for DTX, and the linear correlation coefficient was >0.99. The accuracies ranged from -4.6 to 4.2%, and the precision was no higher than 7.0% for the analytes. No significant matrix effect was observed. Both DTX and the IS showed considerable recovery. This method was finally applied to the establishment of a population pharmacokinetic model to optimise the clinical use of DTX.


Assuntos
Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Cromatografia Líquida/métodos , Docetaxel/sangue , Docetaxel/farmacocinética , Adulto , Antineoplásicos/química , Antineoplásicos/uso terapêutico , China , Docetaxel/química , Docetaxel/uso terapêutico , Humanos , Modelos Lineares , Neoplasias/tratamento farmacológico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
14.
Zhongguo Zhong Yao Za Zhi ; 42(23): 4582-4587, 2017 Dec.
Artigo em Zh | MEDLINE | ID: mdl-29376255

RESUMO

To explore the resource of endophytic actinomycete in Fritillaria unibracteata, and alleviate the shortage of F. unibracteata resource, using F. unibracteata as experimental materials which growth in the western Sichuan plateau and cut its healthy bulb. Pure culture, insert, TLC and Oxford cup were applied to observe the mycelial morphology, research the ability of producing alkaloid and its antibacterial activity. Totally, 14 endophytic actinomycete strains were isolated by using Gao culture media. Based on the color reaction, 5 typical strains were selected for producing alkaloid. Through the TLC technique, all strains produced 2 obvious alkaloids spots. Antibacterial activity determination showed that the antimicrobial effects of 2 strains is prominent, the diameter up to 11 mm.16S rRNA gene sequence comparison analysis showed that 5 strains belonging to the Streptomyces. The alkaloids produced by endophytic actinomycetes are not related to F. unibracteata, but its fermentation liquid has antibacterial effect, it is worthy of further study.


Assuntos
Actinomyces/química , Alcaloides/farmacologia , Anti-Infecciosos/farmacologia , Fritillaria/microbiologia , Alcaloides/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , RNA Ribossômico 16S/genética
15.
Cochrane Database Syst Rev ; (3): CD010636, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25773054

RESUMO

BACKGROUND: Bronchiolitis is an acute inflammatory illness of the bronchioles common among infants and young children. It is often caused by the respiratory syncytial virus (RSV). Management of bronchiolitis varies between clinicians, reflecting the lack of evidence for a specific treatment approach. The leukotriene pathway has been reported to be involved in the pathogenesis of bronchiolitis. Leukotriene inhibitors such as montelukast have been used in infants and young children with bronchiolitis. However, the results from limited randomised controlled trials (RCTs) are controversial and necessitate a thorough evaluation of their efficacy for bronchiolitis in infants and young children. OBJECTIVES: To assess the efficacy and safety of leukotriene inhibitors for bronchiolitis in infants and young children. SEARCH METHODS: We searched CENTRAL (2014, Issue 5), MEDLINE (1946 to April week 4, 2014), EMBASE (1974 to May 2014), CINAHL (1981 to May 2014), LILACS (1982 to May 2014), Web of Science (1985 to May 2014), WHO ICTRP and ClinicalTrials.gov (6 May 2014). SELECTION CRITERIA: RCTs comparing leukotriene inhibitors versus placebo or another intervention in infants and young children under two years of age diagnosed with bronchiolitis. Our primary outcomes were length of hospital stay and all-cause mortality. Secondary outcomes included clinical severity score, percentage of symptom-free days, percentage of children requiring ventilation, oxygen saturation, recurrent wheezing, respiratory rate and clinical adverse effects. DATA COLLECTION AND ANALYSIS: We used standard Cochrane Collaboration methodological practices. Two authors independently assessed trial eligibility and extracted data, such as general information, participant characteristics, interventions and outcomes. We assessed risk of bias and graded the quality of the evidence. We used Review Manager software to pool results and chose random-effects models for meta-analysis. MAIN RESULTS: We included five studies with a total of 1296 participants under two years of age hospitalised with bronchiolitis. Two studies with low risk of bias compared 4 mg montelukast (a leukotriene inhibitor) daily use from admission until discharge with a matching placebo. Both selected length of hospital stay as a primary outcome and clinical severity score as a secondary outcome. However, the effects of leukotriene inhibitors on length of hospital stay and clinical severity score were uncertain due to considerable heterogeneity between the study results and wide confidence intervals around the estimated effects (hospital stay: mean difference (MD) -0.95 days, 95% confidence interval (CI) -3.08 to 1.19, P value = 0.38, low quality evidence; clinical severity score on day two: MD -0.57, 95% CI -2.37 to 1.23, P value = 0.53, low quality evidence; clinical severity score on day three: MD 0.17, 95% CI -1.93 to 2.28, P value = 0.87, low quality evidence). The other three studies compared montelukast for several weeks for preventing post-bronchiolitis symptoms with placebo. We assessed one study as low risk of bias, whereas we assessed the other two studies as having a high risk of attrition bias. Due to the significant clinical heterogeneity in severity of disease, duration of treatment, outcome measurements and timing of assessment, we did not pool the results. Individual analyses of these studies did not show significant differences between the leukotriene inhibitors group and the control group in symptom-free days and incidence of recurrent wheezing. One study of 952 children reported two deaths in the leukotriene inhibitors group: neither was determined to be drug-related. No data were available on the percentage of children requiring ventilation, oxygen saturation and respiratory rate. Finally, three studies reported adverse events including diarrhoea, wheezing shortly after administration and rash. No differences were reported between the study groups. AUTHORS' CONCLUSIONS: The current evidence does not allow definitive conclusions to be made about the effects of leukotriene inhibitors on length of hospital stay and clinical severity score in infants and young children with bronchiolitis. The quality of the evidence was low due to inconsistency (unexplained high levels of statistical heterogeneity) and imprecision arising from small sample sizes and wide confidence intervals, which did not rule out a null effect or harm. Data on symptom-free days and incidence of recurrent wheezing were from single studies only. Further large studies are required. We identified one registered ongoing study, which may make a contribution in the updates of this review.


Assuntos
Acetatos/uso terapêutico , Bronquiolite/tratamento farmacológico , Antagonistas de Leucotrienos/uso terapêutico , Quinolinas/uso terapêutico , Acetatos/efeitos adversos , Ciclopropanos , Humanos , Lactente , Tempo de Internação , Antagonistas de Leucotrienos/efeitos adversos , Quinolinas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulfetos
16.
Aging (Albany NY) ; 16(9): 7979-7999, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742934

RESUMO

BACKGROUND: Xiaochaihu (XCH) decoction is a traditional Chinese prescription that has been recorded in the pharmacopeia of the People's Republic of China. In China, the XCH decoction is used clinically to treat a variety of tumors, including breast cancer. However, its potential mechanism of action is still undefined. METHODS: The chemical compounds in the XCH decoction were identified via Q Exactive Orbitrap LC-MS/MS. Then, we screened the active ingredients and targets in the XCH decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Next, Cytoscape and Metascape were used to construct an active ingredient-target-disease network, which included a protein-protein interaction (PPI) network, GO enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, we used molecular docking and in vitro experiments to verify the results of network pharmacology analysis. RESULTS: More than 70 major compounds were identified by Q Exactive Orbitrap LC-MS/MS analysis from the XCH decoction. A total of 162 active ingredients and 153 targets related to the XCH decoction and breast cancer were identified, and a compound-target-disease network was constructed. GO and KEGG analyses revealed that the XCH decoction regulated the drug response, apoptosis process, cancer pathway, and PI3K/Akt signaling pathway. Molecular docking and experimental validation indicated that the XCH decoction suppressed proliferation and induced apoptosis in breast cancer cells by regulating the expression of apoptosis-related proteins and inhibiting the PI3K/Akt pathway. CONCLUSIONS: This study suggested that the XCH decoction can be used to treat breast cancer by inhibiting cell proliferation, inducing apoptosis and downregulating the PI3K/Akt signaling pathway.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Mapas de Interação de Proteínas , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espectrometria de Massas em Tandem , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Medicina Tradicional Chinesa
17.
Artigo em Inglês | MEDLINE | ID: mdl-38847263

RESUMO

BACKGROUND: The clinical use of doxorubicin (DOX), an anthracycline antibiotic with broad-spectrum applications against various malignant tumors, is limited by doxorubicininduced cardiotoxicity (DIC). Eriodictyol (ERD) has shown cardioprotective effects, but the mechanism of its protective effect on DIC remains unknown. AIMS: This study aimed to explore the potential mechanisms by which ERD confers protection against DIC. METHODS: ERD and DIC targets were identified from the TCMSP, PharmMaper, SwissTargetPrediction, TargetNet, BATMAN, GeneCards, and PharmGKB databases. Differential gene expression data between DIC and normal tissues were extracted from the GEO database. A protein‒ protein interaction (PPI) network of the intersecting ERD-DIC targets was constructed using the STRING platform and visualized with Cytoscape 3.10.0 software. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for ERD-DIC cross-targets were conducted. Validation included molecular docking with AutoDock Tools software and molecular dynamics simulations with Gromacs 2019.6 software. RESULTS: Network pharmacology analysis revealed 43 intersecting ERD-DIC targets, including 6 key targets. GO functional enrichment analysis indicated that the intersecting targets were enriched in 550 biological processes, 45 cell components, and 41 molecular functions. KEGG pathway enrichment analysis identified 114 enriched signaling pathways. Molecular docking revealed a strong binding affinity between ERD and 6 key targets, as well as multiple targets within the ROS pathway. Molecular dynamics simulations indicated that ERD has favorable binding with 3 crucial targets. CONCLUSION: The systematic network pharmacology analysis suggests that ERD may mitigate DIC through multiple targets and pathways, with the ROS pathway potentially playing a crucial role. These findings provide a reference for foundational research and clinical applications of ERD in treating DIC.

18.
Curr Pharm Des ; 30(9): 702-726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415453

RESUMO

BACKGROUND: Liujunzi Decoction (LJZD) is a potential clinical treatment for Breast Cancer (BC), but the active ingredients and mechanisms underlying its effectiveness remain unclear. OBJECTIVE: The study aimed to investigate the target gene of LJZD compatibility and the possible mechanism of action in the treatment of breast cancer by using network pharmacology and molecular docking. METHODS: Based on TCMSP, ETCM, and BATMAN database searching and screening to obtain the ingredients of LJZD, the related targets were obtained. Breast cancer-related targets were collected through GEO, Geencards, OMIM, and other databases, and drug-disease Venn diagrams were drawn by R. The PPI network map was constructed by using Cytoscape. The intersecting targets were imported into the STRING database, and the core targets were analyzed and screened. The intersected targets were analyzed by the DAVID database for GO and KEGG enrichment. AutoDock Vina and Gromacs were used for molecular docking and simulation of the core targets and active ingredients. RESULTS: 126 active ingredients of LJZD were obtained; 241 targets related to breast cancer were sought after screening, and 180 intersection targets were identified through Venn diagram analysis. The core targets were FOS and ESR1. KEGG enrichment analysis mainly involved PI3K/Akt, MAPK, and other signaling pathways. CONCLUSION: This study has explored the possible targets and signaling pathways of LJZD in treating breast cancer through network pharmacology and bioinformatics analysis. Molecular docking and simulation have further validated the potential mechanism of action of LJZD in breast cancer treatment, providing essential experimental data for future studies.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
19.
Sci Total Environ ; 934: 173169, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735339

RESUMO

Soil cadmium (Cd) contamination is an urgent environmental problem, which endangers human health through the food chain. Bioremediation attracted extensive attention around the world due to the high cost-efficiency. However, the remediation efficiency of different plant and earthworm species of soil Cd pollution is still unclear, it is thus of great significance to explore the combined effects of different remediation plants and earthworm species to improve the bioremediation capacity. In the present study, we consequently selected three species of Cd hyperaccumulator plants (vetiver, P. vittata and S. emarginatum) and three species of earthworms (E. fetida P1, E. fetida P2, and P. guillelmi) to compare the differences in Cd accumulation among various earthworm-plant combinations. Results indicated that the changes of soil pH and SOM in plant-animal combined application induced the higher soil Cd removal efficiency. The Cd removal efficiency showed highest in combination groups P. vittata-E. fetida P2 and P. vittata-P. guillelmi. Meanwhile, the improvements of biomass of plants and animals also were consistent with the increasing of Cd concentration in both plants and earthworms after combined application. It showed that the Cd concentrations in P. vittata were the highest while the TFs of Cd in S. emarginatum displays significantly more than that in others. In conclusion, the recommended combined system of earthworm-plant (P. vittata-E. fetida P2 and P. vittata-P. guillelmi) to provide reference for soil Cd bioremediation system in practice.


Assuntos
Biodegradação Ambiental , Cádmio , Oligoquetos , Poluentes do Solo , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Animais , Solo/química , Recuperação e Remediação Ambiental/métodos
20.
Curr Pharm Des ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920073

RESUMO

BACKGROUND: At present, drug development for treating Alzheimer's disease (AD) is still highly challenging. Eriodictyol (ERD) has shown great potential in treating AD, but its molecular mechanism is unknown. OBJECTIVE: We aimed to explore the potential targets and mechanisms of ERD in the treatment of AD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS: ERD-related targets were predicted based on the CTD, SEA, PharmMapper, Swiss TargetPrediction, and ETCM databases, and AD-related targets were predicted through the TTD, OMIM, DrugBank, GeneCards, Disgenet, and PharmGKB databases. Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomics analyses (KEGG) were used to analyse the potential targets and key pathways of the anti-AD effect of ERD. Subsequently, potential DEGs affected by AD were analysed using the AlzData database, and their relationships with ERD were evaluated through molecular docking and molecular dynamics simulations. RESULTS: A total of 198 ERD-related targets, 3716 AD-related targets, and 122 intersecting targets were identified. GO annotation analysis revealed 1497 biological processes, 78 cellular components, and 132 molecular functions of 15 core targets. KEGG enrichment analysis identified 168 signalling pathways. We ultimately identified 9 DEGs associated with AD through analysis of the AlzData data. Molecular docking results showed good affinity between the selected targets and ERD, with PTGS2, HSP90AA1, and BCL2. The interactions were confirmed by molecular dynamics simulations. CONCLUSION: ERD exerts anti-AD effects through multiple targets, pathways, and levels, providing a theoretical foundation and valuable reference for the development of ERD as a natural anti-AD drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA