Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Today Bio ; 27: 101125, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979129

RESUMO

Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.

2.
Curr Res Microb Sci ; 7: 100263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176008

RESUMO

The highly conserved hydrophobic pocket region of HIV-1 gp41 NHR triple-stranded coiled coil is crucial for the binding of CHR to NHR to form a six-helix bundle (6-HB). This pocket is only exposed instantaneously during fusion, making it an ideal target for antibody drug design. However, IgG molecule is too big to enter the pocket during the fusion process. Therefore, to overcome the steric hindrance and kinetic obstacles caused by the formation of gp41 pre-hairpin fusion intermediate, we obtained nanobodies (Nbs) targeting NHR by immunizing alpaca with an NHR-trimer mimic. Specifically, we identified a Nb, Nb-172, that exhibited potent and broadly neutralizing activity against HIV-1 pseudoviruses, HIV-1 primary isolates, and T20-resistant HIV-1 strains. In addition, the combinatorial use of mD1.22 and Nb-172 exhibited synergism in inhibiting HIV-1 infection inactivating cell-free virions. Nb-172 can competitively bind to the hydrophobic pocket of gp41 NHR to inhibit 6-HB formation. These findings suggest that Nb-172 merits further investigation as a potential therapeutic for HIV-1 infection.

3.
Bioact Mater ; 35: 56-66, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38283387

RESUMO

316L stainless steel (SS) is widely applied as microimplant anchorage (MIA) due to its excellent mechanical properties. However, the risk that the oral microorganisms can corrode 316L SS is fully neglected. Microbiologically influenced corrosion (MIC) of 316L SS is essential to the health and safety of all patients because the accelerated corrosion caused by the oral microbiota can trigger the release of Cr and Ni ions. This study investigated the corrosion behavior and mechanism of subgingival microbiota on 316L SS by 16S rRNA and metagenome sequencing, electrochemical measurements, and surface characterization techniques. Multispecies biofilms were formed by the oral subgingival microbiota in the simulated oral anaerobic environment on 316L SS surfaces, significantly accelerating the corrosion in the form of pitting. The microbiota samples collected from the subjects differed in biofilm compositions, corrosion behaviors, and mechanisms. The oral subgingival microbiota contributed to the accelerated corrosion of 316L SS via acidic metabolites and extracellular electron transfer. Our findings provide a new insight into the underlying mechanisms of oral microbial corrosion and guide the design of oral microbial corrosion-resistant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA