RESUMO
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.
RESUMO
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.
Assuntos
Armadilhas Extracelulares , Lactoferrina , Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologiaRESUMO
Atherosclerosis is a chronic inflammatory disease of arterial wall, and circulating monocyte adhesion to endothelial cells is a crucial step in the pathogenesis of atherosclerosis. Epithelial-stromal interaction 1 (EPSTI1) is a novel gene, which is dramatically induced by epithelial-stromal interaction in human breast cancer. EPSTI1 expression is not only restricted to the breast but also in other normal tissues. In this study we investigated the role of EPSTI1 in monocyte-endothelial cell adhesion and its expression pattern in atherosclerotic plaques. We showed that EPSTI1 was dramatically upregulated in human and mouse atherosclerotic plaques when compared with normal arteries. In addition, the expression of EPSTI1 in endothelial cells of human and mouse atherosclerotic plaques is significantly higher than that of the normal arteries. Furthermore, we demonstrated that EPSTI1 promoted human monocytic THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs) via upregulating VCAM-1 and ICAM-1 expression in HUVECs. Treatment with LPS (100, 500, 1000 ng/mL) induced EPSTI1 expression in HUVECs at both mRNA and protein levels in a dose- and time-dependent manner. Knockdown of EPSTI1 significantly inhibited LPS-induced monocyte-endothelial cell adhesion via downregulation of VCAM-1 and ICAM-1. Moreover, we revealed that LPS induced EPSTI1 expression through p65 nuclear translocation. Thus, we conclude that EPSTI1 promotes THP-1 cell adhesion to endothelial cells by upregulating VCAM-1 and ICAM-1 expression, implying its potential role in the development of atherosclerosis.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Adesão Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Monócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Placa Aterosclerótica/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.
Assuntos
Movimento CelularRESUMO
OBJECTIVE: Noncoding RNAs are emerging as important players in gene regulation and cardiovascular diseases. Their roles in the pathogenesis of atherosclerosis are not fully understood. The purpose of this study was to determine the role played by a previously uncharacterized long noncoding RNA, RP11-728F11.4, in the development of atherosclerosis and the mechanisms by which it acts. Approach and Results: Expression microarray analysis revealed that atherosclerotic plaques had increased expression of RP11-728F11.4 as well as the cognate gene FXYD6 (FXYD domain containing ion transport regulator 6), which encodes a modulator of Na+/K+-ATPase. In vitro experiments showed that RP11-728F11.4 interacted with the RNA-binding protein EWSR1 (Ewings sarcoma RNA binding protein-1) and upregulated FXYD6 expression. Lentivirus-induced overexpression of RP11-728F11.4 in cultured monocytes-derived macrophages resulted in higher Na+/K+-ATPase activity, intracellular cholesterol accumulation, and increased proinflammatory cytokine production. The effects of RP11-728F11.4 were enhanced by siRNA-mediated knockdown of EWSR1 and reduced by downregulation of FXYD domain containing ion transport regulator 6. In vivo experiments in apoE knockout mice fed a Western diet demonstrated that RP11-728F11.4 increased proinflammatory cytokine production and augmented atherosclerotic lesions. CONCLUSIONS: RP11-728F11.4 promotes atherosclerosis, with an influence on cholesterol homeostasis and proinflammatory molecule production, thus representing a potential therapeutic target. Graphic Abstract: A graphic abstract is available for this article.
Assuntos
Aterosclerose/genética , RNA Longo não Codificante/genética , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Colesterol/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , RNA Longo não Codificante/metabolismo , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Regulação para CimaRESUMO
Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.
Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Imageamento por Ressonância Magnética/métodos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerização , Conformação Proteica , Domínios ProteicosRESUMO
Acetylation is a ubiquitous modification on cell wall polymers, which play a structural role in plant growth and stress defenses. However, the mechanisms for how crop plants accomplish cell wall polymer O-acetylation are largely unknown. Here, we report on the isolation and characterization of two trichome birefringence-like (tbl) mutants in rice (Oryza sativa), which are affected in xylan O-acetylation. ostbl1 and ostbl2 single mutant and the tbl1 tbl2 double mutant displayed a stunted growth phenotype with varied degree of dwarfism. As shown by chemical assays, the wall acetylation level is affected in the mutants and the knock-down and overexpression transgenic plants. Furthermore, NMR spectroscopy analyses showed that all those mutants have varied decreases in xylan monoacetylation. The divergent expression levels of OsTBL1 and OsTBL2 explained the chemotype difference and indicated that OsTBL1 is a functionally dominant gene. OsTBL1 was found to be Golgi-localized. The recombinant OsTBL1 protein incorporates acetyl groups onto xylan. By using xylopentaose, a preferred acceptor substrate, OsTBL1 can transfer up to four acetyl residues onto xylopentaose, and this activity showed saturable kinetics. 2D-NMR spectroscopy showed that OsTBL1 transfers acetate to both 2-O and 3-O sites of xylosyl residues. In addition, ostbl1 and tbl1 tbl2 displayed susceptibility to rice blight disease, indicating that this xylan modification is required for pathogen resistance. This study identifies the major genes responsible for xylan acetylation in rice plants.
Assuntos
Oryza/metabolismo , Oryza/microbiologia , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Birrefringência , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Mutação , Oryza/genética , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tricomas/metabolismo , Xilanos/genéticaRESUMO
BACKGROUND: Atrial fibrillation is a common complication after cardiac surgery. The aim of this study is to evaluate whether N-acetylcysteine (NAC) could prevent postoperative atrial fibrillation (POAF). METHODS: PubMed, Embase and Cochrane Center Register of Controlled Trials were searched from the date of their inception to 1 July 2013 for relevant randomized controlled trials (RCTs), in which NAC was compared with controls for adult patients undergoing cardiac surgery. Outcome measures comprised the incidence of POAF, all-cause mortality, length of intensive care unit (ICU) stay, hospital length of stay, and the incidence of cerebrovascular events. The meta-analysis was performed with the fixed-effect model or random-effect model according to the heterogeneity. RESULTS: We retrieved ten studies enrolling a total of 1026 patients. Prophylactic NAC reduced the incidence of POAF (OR 0.56; 95% CI 0.40 to 0.77; P < 0.001) and all-cause mortality (OR 0.40; 95% CI 0.17 to 0.93; P = 0.03) compared with controls, but failed to reduce the stay in ICU and overall stay in hospital. No difference in the incidence of cerebrovascular events was observed. CONCLUSIONS: Prophylactic use of NAC could reduce the incidence of POAF and all-cause mortality in adult patients undergoing cardiac surgery. However, larger RCTs evaluating these and other postoperative complication endpoints are needed.
Assuntos
Acetilcisteína/uso terapêutico , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/prevenção & controle , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Fibrilação Atrial/etiologia , Fibrilação Atrial/mortalidade , Procedimentos Cirúrgicos Cardíacos/mortalidade , Distribuição de Qui-Quadrado , Humanos , Incidência , Unidades de Terapia Intensiva , Tempo de Internação , Razão de Chances , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: Metabolic score for insulin resistance (METS-IR) is a surrogate index to estimate insulin sensitivity. The aim of this study was to examine the association between METS-IR and regression to normoglycemia in Chinese adults with prediabetes. METHODS: A total of 15,415 Chinese adults with prediabetes defined by their fasting blood glucose were included in this retrospective study. The association between METS-IR and regression to normoglycemia from prediabetes was evaluated using the Cox proportional hazards regression model. A Cox proportional hazards regression with cubic spline function was performed to explore the nonlinear association between METS-IR and regression to normoglycemia. Kaplan-Meier curves was used to describe the probability of regression to normoglycemia from prediabetes. RESULTS: In multivariate Cox proportional hazards regression analyses, the increase in METS-IR was independently associated with a reduced probability of regression to normoglycemia from prediabetes (all p < 0.01 in models 1-3). A nonlinear association between METS-IR and the probability of regression to normoglycemia was observed, with an inflection point of 49.3. The hazard ratio on the left side of the inflection point was 0.965 (95% CI 0.953-0.976). Subgroup analyses demonstrated the robustness of our findings. CONCLUSION: This study demonstrated a negative and nonlinear association between METS-IR and regression to normoglycemia in Chinese adults with prediabetes. When METS-IR is below 49.3, reducing METS-IR could significantly increase the probability of regression to normoglycemia from prediabetes.
Assuntos
Glicemia , Resistência à Insulina , Estado Pré-Diabético , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glicemia/metabolismo , Glicemia/análise , China/epidemiologia , População do Leste Asiático , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/metabolismo , Modelos de Riscos Proporcionais , Estudos RetrospectivosRESUMO
PURPOSE: Owing to inconsistent observations in the literature of an association between HLA-DP polymorphisms (rs3077 and rs9277535) and hepatitis B virus (HBV) infection and spontaneous clearance, there is an urgent need for a comprehensive and reliable understanding of this subject. This meta-analysis was performed to quantitatively summarise the evidence for the relevance of these HLA-DP polymorphisms to HBV infection and spontaneous clearance. METHODS: A meta-analysis was conducted with the data from eight relevant papers published from April 2009 to March 2012, following strict selection. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for alleles, co-dominant, dominant and recessive genotype models of the rs3077 and rs9277535 loci. RESULTS: Our analysis indicated a significant association of rs3077 and rs9277535 in HLA-DP with HBV infection, suggesting that these HLA-DP polymorphisms act beneficially against HBV infection (for rs3077, AG vs. GG: OR = 0.522, 95% CI = 0.485-0.561; AA vs. GG: OR = 0.350, 95% CI = 0.311-0.393; for rs9277535, AG vs. GG: OR = 0.542, 95% CI = 0.506-0.579; AA vs. GG: OR = 0.371, 95% CI = 0.336-0.409). Additionally, these HLA-DP polymorphisms served as protective factors in the spontaneous clearance of HBV (for rs3077, AG vs. GG: OR = 0.600, 95% CI = 0.464-0.775; AA vs. GG: OR = 0.420, 95% CI = 0.299-0.590; for rs9277535, AG vs. GG: OR = 0.623, 95% CI = 0.570-0.681 and AA vs. GG: OR = 0.464, 95% CI = 0.386-0.556) with similar results for both dominant and recessive genotype models. CONCLUSIONS: Our results demonstrated that the rs3077 and rs9277535 HLA-DP polymorphisms reduced HBV infection and increased the likelihood of spontaneous viral clearance in some Asian populations.
Assuntos
Povo Asiático/genética , Antígenos HLA-DP/genética , Hepatite B/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Remissão EspontâneaRESUMO
Cerebral ischemia, resulting from compromised blood flow, is one of the leading causes of death worldwide with limited therapeutic options. Potential deleterious injuries resulting from reperfusion therapies remain a clinical challenge for physicians. This study aimed to explore the metabolomic alterations during ischemia-reperfusion injury by employing metabolomic analysis coupled with gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography quadrupole (UPLC/Q)-TOF-MS. Metabolomic data from mice subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion (MCAO/R) were compared to those of the sham and MCAO groups. A total of 82 simultaneously differentially expressed metabolites were identified among each group. The top three major classifications of these differentially expressed metabolites were organic acids, lipids, and organooxygen compounds. Metabolomics pathway analysis was conducted to identify the underlying pathways implicated in MCAO/R. Based on impactor scores, the most significant pathways involved in the response to the reperfusion after cerebral ischemia were glycerophospholipid metabolism, linoleic acid metabolism, pyrimidine metabolism, and galactose metabolism. 17 of those 82 metabolites were greatly elevated in the MCAO/Reperfusion group, when compared to those in the sham and MCAO groups. Among those metabolites, glucose-6-phosphate 1, fructose-6-phosphate, cellobiose 2, o-phosphonothreonine 1, and salicin were the top five elevated metabolites in MCAO/R group, compared with the MCAO group. Glycolysis, the pentose phosphate pathway, starch and sucrose metabolism, and fructose and mannose degradation were the top four ranked pathways according to metabolite set enrichment analysis (MSEA). The present study not only advances our understanding of metabolomic changes among animals in the sham and cerebral ischemia groups with or without reperfusion via metabolomic profiling, but also paves the way to explore potential molecular mechanisms underlying metabolic alteration induced by cerebral ischemia-reperfusion.
RESUMO
Long non-coding RNAs (lncRNAs) are emerging as important players in gene regulation and cardiovascular diseases. However, the roles of lncRNAs in atherosclerosis are poorly understood. In the present study, we found that the levels of NIPA1-SO were decreased while those of NIPA1 were increased in human atherosclerotic plaques. Furthermore, NIPA1-SO negatively regulated NIPA1 expression in human umbilical vein endothelial cells (HUVECs). Mechanistically, NIPA1-SO interacted with the transcription factor FUBP1 and the NIPA1 gene. The effect of NIPA1-SO on NIPA1 protein levels was reversed by the knockdown of FUBP1. NIPA1-SO overexpression increased, whilst NIPA1-SO knockdown decreased BMPR2 levels; these effects were enhanced by the knockdown of NIPA1. The overexpression of NIPA1-SO reduced while NIPA1-SO knockdown increased monocyte adhesion to HUVECs; these effects were diminished by the knockdown of BMPR2. The lentivirus-mediated-overexpression of NIPA1-SO or gene-targeted knockout of NIPA1 in low-density lipoprotein receptor-deficient mice reduced monocyte-endothelium adhesion and atherosclerotic lesion formation. Collectively, these findings revealed a novel anti-atherosclerotic role for the lncRNA NIPA1-SO and highlighted its inhibitory effects on vascular inflammation and intracellular cholesterol accumulation by binding to FUBP1 and consequently repressing NIPA1 expression.
Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologiaRESUMO
Background: Sacubitril/valsartan therapy reduced the risks of death and of hospitalization for heart failure (HF). HF and cardiac arrhythmias have shared physiological mechanisems. Therefore, sacubitril/valsartan may exhibit anti-arrhythmic properties in HF. The purpose of this study was to evaluate the effect of sacubitril/valsartan on the occurrence of cardiac arrhythmias and the risk of sudden cardiac death (SCD) in HF. Methods: This meta-analysis was performed according to PRISMA guidelines. We searched PubMed and Embase (from inception up to 6 February 2022) to identify randomized control trials (RCTs) on the effect of sacubitril/valsartan on the occurrence of cardiac arrhythmias and the risk of SCD in HF. Primary outcomes were the occurrence of atrial arrhythmias, ventricular arrhythmias, and SCD. Risk ratios (RRs) with 95% confidence intervals (CIs) were pooled using a random-effects model for meta-analysis. Results: We included 9 RCTs (published between 2012 and 2021) with 18,500 patients (9,244 sacubitril/valsartan vs. 9,256 active control). Enalapril and valsartan were used as active control in six and two studies, respectively. Follow-up ranged from 2 to 35 months. The cumulative occurrence of events was 76, 13, and 48 per 1,000 patient-years for atrial arrhythmias, ventricular arrhythmias and SCD, respectively. There was no significant association between sacubitril/valsartan therapy and the occurrence of atrial arrhythmias (RR 1.06; 95% CI: 0.97-1.17; P = 0.19) and ventricular arrhythmias (RR 0.86; 95% CI 0.68-1.10; P = 0.24). However, sacubitril/valsartan therapy significantly reduced the risk of SCD (RR 0.79; 95% CI 0.70-0.90; P = 0.03) compared with control. Conclusion: No association between sacubitril/valsartan therapy and the occurrence of atrial and ventricular arrhythmias was found, but sacubitril/valsartan therapy significantly reduced the risk of SCD.
RESUMO
In ß-thalassemia, free α-globin chains are unstable and tend to aggregate or degrade, releasing toxic heme, porphyrins and iron, which produce reactive oxygen species (ROS). α-Hemoglobin-stabilizing protein (AHSP) is a potential modifier of ß-thalassemia due to its ability to escort free α-globin and inhibit the cellular production of ROS. The influence of AHSP on the redox equilibrium raises the question of whether AHSP expression is regulated by components of ROS signaling pathways and/or canonical redox proteins. Here, we report that AHSP expression in K562 cells could be stimulated by NFE2-related factor 2 (Nrf2) and its agonist tert-butylhydroquinone (tBHQ). This tBHQ-induced increase in AHSP expression was also observed in Ter119+ mouse erythroblasts at each individual stage during terminal erythroid differentiation. We further report that the AHSP level was elevated in α-globin-overexpressing K562 cells and staged erythroblasts from ßIVS-2-654 thalassemic mice. tBHQ treatment partially alleviated, whereas Nrf2 or AHSP knockdown exacerbated, α-globin precipitation and ROS production in fetal liver-derived thalassemic erythroid cells. MafG and Nrf2 occupancy at the MARE-1 site downstream of the AHSP transcription start site was detected in K562 cells. Finally, we show that MafG facilitated the activation of the AHSP gene in K562 cells by Nrf2. Our results demonstrate Nrf2-mediated feedback regulation of AHSP in response to excess α-globin, as occurs in ß-thalassemia.
Assuntos
Chaperonas Moleculares , Fator 2 Relacionado a NF-E2 , Talassemia beta , Animais , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismoRESUMO
BACKGROUND: The safety of discontinuing oral anticoagulant (OAC) therapy after atrial fibrillation (AF) ablation remains controversial. A meta-analysis was performed to assess the safety and feasibility of discontinuing OAC therapy after successful AF ablation. METHODS: PubMed and Embase were searched up to October 2020 for prospective cohort studies that reported the risk of thromboembolism (TE) after successful AF ablation in off-OAC and on-OAC groups. The primary outcome was the incidence of TE events. The Mantel-Haenszel method with random-effects modeling was used to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: A total of 11,148 patients (7,160 in the off-OAC group and 3,988 in the on-OAC group) from 10 studies were included to meta-analysis. No significant difference in TE between both groups was observed (OR, 0.73; 95%CI, 0.51-1.05; I2 = 0.0%). The risk of major bleeding in off-OAC group was significantly lower compared to the on-OAC group (OR, 0.18; 95%CI, 0.07-0.51; I2 = 51.7%). CONCLUSIONS: Our study suggests that it may be safe to discontinue OAC therapy in patients after successful AF ablation. Additionally, an increased risk of major bleeding was observed in patients on OAC. However, the results of this meta-analysis should be interpreted with caution because of the heterogeneity among the included study designs. Large-scale and adequately powered randomized controlled trials are warranted to confirm these findings.
Assuntos
Anticoagulantes/uso terapêutico , Fibrilação Atrial/terapia , Ablação por Cateter , Administração Oral , Fibrilação Atrial/epidemiologia , Humanos , Incidência , Estudos ProspectivosRESUMO
The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.
Assuntos
Inibidores Enzimáticos/farmacologia , Heparina/farmacologia , Sialiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Heparina/química , Humanos , Domínios Proteicos/efeitos dos fármacos , Sialiltransferases/metabolismoRESUMO
BACKGROUND AND AIMS: Pyroptosis is a relatively newly discovered form of programmed cell death that plays an important role in the development of atherosclerosis. Many studies have reported that lncRNAs participated in the regulation of atherosclerosis development. However, the regulatory mechanism of lncRNAs in pyroptosis must be studied further. METHODS: In a previous study, microarray analysis was used to detect the lncRNA expression profile in three human advanced atherosclerotic plaques and three normal arterial intimae. In the present research, in vitro assays were performed to investigate the role of lncRNA RP11-490M8.1 on pyroptosis. The relative gene mRNA and lncRNA expression levels were tested by quantitative real-time PCR, and protein levels were evaluated by western blot analysis. The RNA hybrid structure was analyzed using the DINAMelt server. RESULTS: The lncRNA RP11-490M8.1 was significantly downregulated in atherosclerotic plaques and serum. Lipopolysaccharide (LPS) markedly reduced the expression of lncRNA RP11-490M8.1 and induced pyroptosis by increasingthe mRNA and protein levels of NLRP3, caspase-1, ASC, IL-1ß, and IL-18 in HUVECs. The promotion effects ofLPS on pyroptosis were markedly suppressed by overexpression of lncRNA RP11-490M8.1. In addition, LPS increased the mRNA and protein levels ofTLR4 and NF-κB, which was also markedly offsetby overexpression of lncRNA RP11-490M8.1. CONCLUSIONS: These findings indicated that lncRNA RP11-490M8.1 inhibited LPS-induced pyroptosis via the TLR4/NF-κB pathway. Thus, lncRNA RP11-490M8.1 may provide a therapeutic target to ameliorate atherosclerosis.
Assuntos
Células Endoteliais da Veia Umbilical Humana , NF-kappa B , Piroptose , RNA Longo não Codificante , Receptor 4 Toll-Like , Aterosclerose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/genética , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , RNA Mensageiro , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
The Lonicera plants (family Caprifoliaceae) with strong antioxidant activity are used as potential health-supporting phytochemicals. Studying the detailed relationships between bioactive compounds and their antioxidant activity is important for further comprehensive development and application of them. In this paper, the antioxidant capacities and compositions of five species of Lonicera flowers were investigated by using the online HPLC-DAD/MS-DPPH method. Results indicated that the samples contained higher amounts of phenols had better antioxidant activity. Furthermore, principal component analysis and linear regression were further used to analyze the correlations between antioxidant capacity and compounds and find the compounds having higher contribution to antioxidant activity. 5-O-Caffeoylquinic acid, 4-O-caffeoylshikimic acid, methyl-5-O-caffeoylquinate, 1,4-di-O-caffeoylquinic acid, and 3,4,5-tri-O-caffeoylquinic acid were screened as stronger antioxidant candidates. In this study, HPLC-DAD/MS and antioxidant activity methods were combined together to analyze the compounds' information and activity assays of Lonicera, which might provide more evidence for its quality control.
RESUMO
Atherosclerosis is an immune inflammatory disease and a major cause of mortality and morbidity worldwide. It is generally considered that a number of potent proinflammatory cytokines have a great influence on its pathogenesis, including IL-1ß, IL-6, TNF-α, and NF-κB. A growing amount of empirical evidence indicates that the mechanism of cardiac dysfunction caused by lipopolysaccharide (LPS) is the activation of inflammation, but the exact mechanism in atherosclerosis is still unclear. Previous studies have shown that interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) participates in inflammation, but the effects and possible mechanism of action of IFIT1 on proinflammatory response remain largely unexplained. We found that LPS induced upregulation of IFIT1 expression in a time- and concentration-dependent manner in human umbilical vein endothelial cells (HUVECs). Overexpression of IFIT1 significantly upregulated LPS-induced expression of IL-1ß, IL-6, TNF-α, and NF-κB in HUVECs. IFIT1-siRNA treatment dramatically decreased LPS-induced expression of IL-1ß, IL-6, TNF-α, and NF-κB in HUVECs. The above results show that LPS induces expression of IL-1ß, IL-6, TNF-α, and NF-κB through upregulating IFIT1 expression in HUVECs, and suggested that IFIT1 could act as potential therapeutic target to ameliorate atherosclerosis-related diseases.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Ligação a RNA/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismoRESUMO
BACKGROUND AND AIMS: Many clinical trials have demonstrated that statins convey protective effects against atherosclerosis independent of cholesterol-lowering capacities. Other evidence indicates that pyroptosis, a type of programmed cell death, is likely involved in atherosclerosis, but the effects and mechanisms of statins on pyroptosis must be further revealed. METHODS: Here, we explored the effects and mechanisms of atorvastatin on pyroptosis in human vascular endothelial cells by quantitative real-time polymerase chain reaction and Western blot analyses. RESULTS: Atorvastatin upregulated long non-coding RNA (lncRNA) NEXN-AS1 and the expression of NEXN at both the mRNA and protein levels in a concentration- and time-dependent manner. Atorvastatin inhibited pyroptosis by decreasing the expression levels of the canonical inflammasome pathway biomarkers NLRP3, caspase-1, GSDMD, IL-1ß, and IL-18 at both the mRNA and protein levels. The promotion effects of atorvastatin on NEXN-AS1 and NEXN expression could be significantly abolished by knockdown of lncRNA NEXN-AS1 or NEXN, and its inhibitory effects on pyroptosis were also markedly offset by knock-down of lncRNA NEXN-AS1 or interference of NEXN. CONCLUSIONS: These results demonstrated that atorvastatin regulated pyroptosis via the lncRNA NEXN-AS1-NEXN pathway, which provides a new insight into the mechanism of how atorvastatin promotes non-lipid-lower effects against the development of atherosclerosis and gives new directions on how to reverse atherosclerosis.