Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Exp Cell Res ; 441(2): 114173, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047807

RESUMO

The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.


Assuntos
Homeostase , Doenças Metabólicas , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Animais , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Metabolismo dos Lipídeos
2.
Eur J Neurosci ; 59(10): 2577-2595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419188

RESUMO

Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and ß-amyloid (Aß). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aß by affecting the production and degradation of Aß. Therefore, v-ATPase may be the bridge between DM and AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Glicólise , ATPases Vacuolares Próton-Translocadoras , Doença de Alzheimer/metabolismo , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Diabetes Mellitus/metabolismo , Glicólise/fisiologia , Resistência à Insulina , Lisossomos/metabolismo , Autofagia/fisiologia
3.
J Med Syst ; 43(4): 89, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825011

RESUMO

In order to explore the relationship between hippocampal structure changes and performance symptoms as well as cognitive function in adolescent schizophrenia, taking the brain response signals of psychiatric patients as the research object, the relationship between hippocampal volume drawn by schizophrenia and language memory of negative symptoms is explored based on morphological analysis method. It is found that the left hippocampal volume of schizophrenic patients is abnormal when the whole brain volume is returned, which is significantly lower than that of normal people. It is also found that the left hippocampus volume of schizophrenic patients is a mediator between negative symptoms and speech memory. The results show that the left hippocampus of schizophrenic patients plays an important role in the pathogenesis of schizophrenia.


Assuntos
Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Esquizofrenia/patologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/patologia , Feminino , Humanos , Idioma , Masculino , Esquizofrenia/epidemiologia , Adulto Jovem
4.
Appl Environ Microbiol ; 82(9): 2574-2584, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896132

RESUMO

To expand the chemical and molecular diversity of biotransformation using whole-cell biocatalysts, we genetically engineered a pathway in Escherichia coli for heterologous production of butanone, an important commodity ketone. First, a 1-propanol-producing E. coli host strain with its sleeping beauty mutase (Sbm) operon being activated was used to increase the pool of propionyl-coenzyme A (propionyl-CoA). Subsequently, molecular heterofusion of propionyl-CoA and acetyl-CoA was conducted to yield 3-ketovaleryl-CoA via a CoA-dependent elongation pathway. Lastly, 3-ketovaleryl-CoA was channeled into the clostridial acetone formation pathway for thioester hydrolysis and subsequent decarboxylation to form butanone. Biochemical, genetic, and metabolic factors affecting relative levels of ketogenesis, acidogenesis, and alcohol genesis under selected fermentative culture conditions were investigated. Using the engineered E. coli strain for batch cultivation with 30 g liter(-1)glycerol as the carbon source, we achieved coproduction of 1.3 g liter(-1)butanone and 2.9 g liter(-1)acetone. The results suggest that approximately 42% of spent glycerol was utilized for ketone biosynthesis, and thus they demonstrate potential industrial applicability of this microbial platform.


Assuntos
Butanonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas Bacteriológicas/métodos , Reatores Biológicos , Vias Biossintéticas , Fermentação , Engenharia Genética/métodos , Engenharia Metabólica/métodos , Óperon
5.
Appl Environ Microbiol ; 82(17): 5375-88, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342556

RESUMO

UNLABELLED: Crude glycerol, the major by-product of biodiesel production, is an attractive bioprocessing feedstock owing to its abundance, low cost, and high degree of reduction. In line with the advent of the biodiesel industry, Clostridium pasteurianum has gained prominence as a result of its unique capacity to convert waste glycerol into n-butanol, a high-energy biofuel. However, no efforts have been directed at abolishing the production of 1,3-propanediol (1,3-PDO), the chief competing product of C. pasteurianum glycerol fermentation. Here, we report rational metabolic engineering of C. pasteurianum for enhanced n-butanol production through inactivation of the gene encoding 1,3-PDO dehydrogenase (dhaT). In spite of current models of anaerobic glycerol dissimilation, culture growth and glycerol utilization were unaffected in the dhaT disruption mutant (dhaT::Ll.LtrB). Metabolite characterization of the dhaT::Ll.LtrB mutant revealed an 83% decrease in 1,3-PDO production, encompassing the lowest C. pasteurianum 1,3-PDO titer reported to date (0.58 g liter(-1)). With 1,3-PDO formation nearly abolished, glycerol was converted almost exclusively to n-butanol (8.6 g liter(-1)), yielding a high n-butanol selectivity of 0.83 g n-butanol g(-1) of solvents compared to 0.51 g n-butanol g(-1) of solvents for the wild-type strain. Unexpectedly, high-performance liquid chromatography (HPLC) analysis of dhaT::Ll.LtrB mutant culture supernatants identified a metabolite peak consistent with 1,2-propanediol (1,2-PDO), which was confirmed by nuclear magnetic resonance (NMR). Based on these findings, we propose a new model for glycerol dissimilation by C. pasteurianum, whereby the production of 1,3-PDO by the wild-type strain and low levels of both 1,3-PDO and 1,2-PDO by the engineered mutant balance the reducing equivalents generated during cell mass synthesis from glycerol. IMPORTANCE: Organisms from the genus Clostridium are perhaps the most notable native cellular factories, owing to their vast substrate utilization range and equally diverse variety of metabolites produced. The ability of C. pasteurianum to sustain redox balance and glycerol fermentation despite inactivation of the 1,3-PDO pathway is a testament to the exceptional metabolic flexibility exhibited by clostridia. Moreover, identification of a previously unknown 1,2-PDO-formation pathway, as detailed herein, provides a deeper understanding of fermentative glycerol utilization in clostridia and will inform future metabolic engineering endeavors involving C. pasteurianum To our knowledge, the C. pasteurianum dhaT disruption mutant derived in this study is the only organism that produces both 1,2- and 1,3-PDOs. Most importantly, the engineered strain provides an excellent platform for highly selective production of n-butanol from waste glycerol.


Assuntos
Clostridium/metabolismo , Propilenoglicol/metabolismo , Propilenoglicóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butanóis/metabolismo , Clostridium/genética , Fermentação , Glicerol/metabolismo
6.
J Ind Microbiol Biotechnol ; 42(7): 1057-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948049

RESUMO

Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular "flux competition" between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such "flux competition" and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the potential for industrial application. To our knowledge, this represents the most effective engineered microbial system for propionate production with titers and yields comparable to those achieved by anaerobic batch cultivation of various native propionate-producing strains of Propionibacteria.


Assuntos
Escherichia coli/metabolismo , Propionatos/metabolismo , Reatores Biológicos , Vias Biossintéticas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Glicerol/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Engenharia Metabólica
7.
Appl Microbiol Biotechnol ; 98(22): 9499-515, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25301579

RESUMO

We recently reported the heterologous production of 1-propanol in Escherichia coli via extended dissimilation of succinate under anaerobic conditions through expression of the endogenous sleeping beauty mutase (Sbm) operon. In the present work, we demonstrate high-level coproduction of 1-propanol and ethanol by developing novel engineered E. coli strains with effective cultivation strategies. Various biochemical, genetic, metabolic, and physiological factors affecting relative levels of acidogenesis and solventogenesis during anaerobic fermentation were investigated. In particular, CPC-PrOH3, a plasmid-free propanogenic E. coli strain derived by activating the Sbm operon on the genome, showed high levels of solventogenesis accounting for up to 85 % of dissimilated carbon. Anaerobic fed-batch cultivation of CPC-PrOH3 with glycerol as the major carbon source produced high titers of nearly 7 g/L 1-propanol and 31 g/L ethanol, implying its potential industrial applicability. The activated Sbm pathway served as an ancillary channel for consuming reducing equivalents upon anaerobic dissimilation of glycerol, resulting in an enhanced glycerol dissimilation and a major metabolic shift from acidogenesis to solventogenesis.


Assuntos
1-Propanol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Anaerobiose , Glicerol/metabolismo , Redes e Vias Metabólicas/genética
8.
Front Chem ; 12: 1416314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841335

RESUMO

Recent years have witnessed a surge in the application of microrobots within the medical sector, with hydrogel microrobots standing out due to their distinctive advantages. These microrobots, characterized by their exceptional biocompatibility, adjustable physico-mechanical attributes, and acute sensitivity to biological environments, have emerged as pivotal tools in advancing medical applications such as targeted drug delivery, wound healing enhancement, bio-imaging, and precise surgical interventions. The capability of hydrogel microrobots to navigate and perform tasks within complex biological systems significantly enhances the precision, efficiency, and safety of therapeutic procedures. Firstly, this paper delves into the material classification and properties of hydrogel microrobots and compares the advantages of different hydrogel materials. Furthermore, it offers a comprehensive review of the principal categories and recent innovations in the synthesis, actuation mechanisms, and biomedical application of hydrogel-based microrobots. Finally, the manuscript identifies prevailing obstacles and future directions in hydrogel microrobot research, aiming to furnish insights that could propel advancements in this field.

9.
BMB Rep ; 57(8): 375-380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38919016

RESUMO

Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis. [BMB Reports 2024; 57(8): 375-380].


Assuntos
Aterosclerose , Inflamação , MicroRNAs , Proto-Oncogene Mas , MicroRNAs/metabolismo , MicroRNAs/genética , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Macrófagos/metabolismo , Monócitos/metabolismo , Adesão Celular/genética , Movimento Celular/genética , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo
10.
Regen Ther ; 27: 48-62, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38496012

RESUMO

The increasing interest in multilineage differentiating stress-enduring (Muse) cells within the field of regenerative medicine is attributed to their exceptional homing capabilities, prolonged viability in adverse conditions, and enhanced three-germ-layer differentiate ability, surpassing their parent mesenchymal stem cells. Given their abundant sources, non-invasive collection procedure, and periodic availability, human menstrual blood-derived endometrium stem cells (MenSCs) have been extensively investigated as a potential resource for stem cell-based therapies. However, there is no established modality to isolate Muse cells from MenSCs and disparity in gene expression profiles between Muse cells and MenSCs remain unknown. In this study, Muse cells were isolated from MenSCs by long-time trypsin incubation method. Muse cells expressed pluripotency markers and could realize multilineage differentiation in vitro. Compared with MenSCs, Muse cells showed enhanced homing ability and superior therapeutic efficacy in animal models of acute liver injury (ALI) and intracerebral hemorrhage (ICH). Furthermore, the RNA-seq analysis offers insights into the mechanism underlying the disparity in trypsin resistance and migration ability between Muse and MenSCs cells. This research offers a significant foundation for further exploration of cell-based therapies using MenSCs-derived Muse cells in the context of various human diseases, highlighting their promising application in the field of regenerative medicine.

11.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947717

RESUMO

Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation. Medical imaging technology is essential for locating and tracking this small treatment machine for evaluation. This article discusses the progress of imaging in tracking the imaging of micro and nano robots in vivo and analyzes the current status of imaging technology for microrobots. The working principle and imaging parameters (temporal resolution, spatial resolution, and penetration depth) of each imaging technology are discussed in depth.

12.
Plants (Basel) ; 11(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365385

RESUMO

Forest ecosystems play an important role in the global carbon cycle. Clarifying the large-scale dynamics of net primary productivity (NPP) and its correlation with climatic factors is essential for national forest ecology and management. Hence, this study aimed to explore the effects of major climatic factors on the Carnegie−Ames−Stanford Approach (CASA) model-estimated NPP of the entire forest and all its corresponding vegetation types in China from 1982 to 2015. The spatiotemporal patterns of interannual variability of forest NPP were illustrated using linear regression and geographic information system (GIS) spatial analysis. The correlations between forest NPP and climatic factors were evaluated using partial correlation analysis and sliding correlation analysis. We found that over thirty years, the average annual NPP of the forests was 887 × 1012 g C/a, and the average annual NPP per unit area was 650.73 g C/m2/a. The interannual NPP of the entire forest and all its corresponding vegetation types significantly increased (p < 0.01). The increase in the NPP of evergreen broad-leaved forests was markedly substantial among forest types. From the spatial perspective, the NPP of the entire forest vegetation gradually increased from northwest to southeast. Over the years, the proportions of the entire forest and all its corresponding vegetation types with a considerable increase in NPP were higher than those with a significant decrease, indicating, generally, improvements in forest NPP. We also found climatic factors variably affected the NPP of forests over time considering that the rise in temperature and solar radiation improved the interannual forest NPP, and the decline in precipitation diminished the forest NPP. Such varying strength of the relationship between the interannual forest NPP and climatic factors also varied across many forest types. Understanding the spatiotemporal pattern of forest NPP and its varying responses to climatic change will improve our knowledge to manage forest ecosystems and maintain their sustainability under a changing environment.

13.
Stem Cell Res Ther ; 13(1): 421, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986359

RESUMO

Stem cell-based regenerative therapies have recently become promising and advanced for treating stroke. Mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) have received the most attention for treating stroke because of the outstanding paracrine function of MSCs and the three-germ-layer differentiation ability of iPSCs. However, the unsatisfactory homing ability, differentiation, integration, and survival time in vivo limit the effectiveness of MSCs in regenerative medicine. The inherent tumorigenic property of iPSCs renders complete differentiation necessary before transplantation, which is complicated and expensive and affects the consistency among cell batches. Multilineage differentiating stress-enduring (Muse) cells are natural pluripotent stem cells in the connective tissues of nearly every organ and thus are considered nontumorigenic. A single Muse cell can differentiate into all three-germ-layer, preferentially migrate to damaged sites after transplantation, survive in hostile environments, and spontaneously differentiate into tissue-compatible cells, all of which can compensate for the shortcomings of MSCs and iPSCs. This review summarizes the recent progress in understanding the biological properties of Muse cells and highlights the differences between Muse cells and other types of stem cells. Finally, we summarized the current research progress on the application of Muse cells on stroke and challenges from bench to bedside.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Acidente Vascular Cerebral , Alprostadil/metabolismo , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
14.
Chem Asian J ; 17(17): e202200561, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35791774

RESUMO

Highly effective contrast enhancer that processes targeting ability and maneuverability is in great demand in clinics for accurate diagnosis. Here a new strategy using deformable and manipulatable magnetic microswarm as MRI contrast enhancer is developed. Magnetic microswarm aggregated from nanoparticles is inherently deformable and they can be controlled with multiple programmable deform abilities. It is demonstrated that spatiotemporal programming magnetic field enables the magnetic microswarm not only to exhibit both ribbon-like and round-like behaviours but also to adaptively navigate multiple terrains. Intestinal model is conducted to explore the effect of magnetic microswarm as MRI enhancer, indicating the obvious enhancement of T2 -weighted MRI sequences. This magnetic microswarm holds great promise for highly sensitive and accurate intestinal MRI in the clinic.


Assuntos
Meios de Contraste , Nanopartículas , Imageamento por Ressonância Magnética , Magnetismo
15.
Neuroscience ; 491: 146-155, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35395357

RESUMO

Peripheral nerve injury (PNI) is a common disease that causes the partial loss of sensory, exercise, and autonomic nervous function. In clinical practice, accurate end-to-end neurorrhaphy of the epineurium without tension is the ideal treatment when there is no nerve defect. We have confirmed that peripheral blood mononuclear cells (PBMCs) can effectively improve nerve regeneration and motor function recovery after PNI. However, the global protein profile and signaling conduction pathways regulated by PBMCs remain unclear. This study employed the transection anastomosis model to detect the walking track analysis, gastrocnemius wet weight rate, and morphological examination in order to validate the effect of PBMCs on sciatic nerve injury in rats. Results showed that PBMCs improved nerve regeneration after sciatic nerve dissociation and anastomosis in rats, which reflected in the improvement of the sciatic nerve function index, wet weight rate of gastrocnemius muscles, muscle fiber structure, and the number of axons. We then used TMT labeling quantitative proteomics to explore the underlying mechanism by which PBMCs ameliorated sciatic nerve injury. Results showed that PBMCs regulated 40 differential proteins and the regulated proteins were primarily involved in the complement and coagulation cascade pathways, the notch signaling pathway, the renin angiotensin system, DNA replication, histidine metabolism, ß-alanine metabolism, and other types of O-glycan biosynthesis. Immunohistochemical results supported our findings on the changes in expression of Kininogen 1 and Psen1, the relationships between PNI and the notch pathway and the complement and coagulation level pathways.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Anastomose Cirúrgica , Animais , Leucócitos Mononucleares , Regeneração Nervosa/fisiologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões , Neuropatia Ciática/cirurgia
16.
Environ Sci Pollut Res Int ; 26(35): 35717-35727, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31701415

RESUMO

Asymmetric warming has been increasingly discussed recently, yet knowledge of this difference in warming between daytime and nighttime is still limited. Most studies of how climate warming influences the terrestrial ecosystem often ignore this asymmetric effect. We investigated the change in temperature between daytime and nighttime and analyzed the relationships between normalized difference vegetation index and the temperature in the daytime (Tmax) and the nighttime (Tmin) from 1982 to 2015 in temperate China. Results showed a faster increase in Tmin (0.46 °C dec-1, p < 0.01) during the nighttime than in Tmax (0.42 °C dec-1, p < 0.01) during the daytime, which indicated an asymmetric warming rate. The asymmetric warming during the daytime and nighttime was closely related to variations in precipitation and solar radiation. The increasing Tmin and Tmax were most pronounced over a large portion of the entire temperate China, and their warming trends displayed a non-uniform spatial distribution. The area with daytime warming was larger than that with nighttime warming, approximately accounting for 99.53% and 96.22% of temperate China, respectively. The area with warming enhancing vegetation greenness was larger during the day (71.16% of temperate China, p < 0.05) than at night (61.60% of temperate China, p < 0.05), and vice versa, which presented asymmetric warming effects on China's temperate vegetation. We also found clear differences in the responses of the normalized difference vegetation index among different vegetation biomes to this asymmetric warming. Averagely, Tmax was significantly related to the NDVI of shrub, desert, broadleaf forest, needleleaf forest, and swamp (p < 0.01). However, this similar relationship appeared only between Tmin and desert vegetation (p < 0.01). Our findings emphasized the crucial role of asymmetric warming between the daytime maxima and nighttime minima in climate change research.


Assuntos
Mudança Climática , China , Mudança Climática/estatística & dados numéricos , Ecossistema , Florestas , Temperatura
18.
Sci Rep ; 6: 36470, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819347

RESUMO

While poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] is a biodegradable commodity plastic with broad applications, its microbial synthesis is hindered by high production costs primarily associated with the supplementation of related carbon substrates (e.g. propionate or valerate). Here we report construction of engineered Escherichia coli strains for direct synthesis of P(3HB-co-3HV) from an unrelated carbon source (e.g. glucose or glycerol). First, an E. coli strain with an activated sleeping beauty mutase (Sbm) operon was used to generate propionyl-CoA as a precursor. Next, two acetyl-CoA moieties or acetyl-CoA and propionyl-CoA were condensed to form acetoacetyl-CoA and 3-ketovaleryl-CoA, respectively, by functional expression of ß-ketothiolases from Cupriavidus necator (i.e. PhaA and BktB). The resulting thioester intermediates were channeled into the polyhydroxyalkanoate (PHA) biosynthetic pathway through functional expression of acetoacetyl-CoA reductase (PhaB) for thioester reduction and PHA synthase (PhaC) for subsequent polymerization. Metabolic engineering of E. coli host strains was further conducted to enhance total PHA content and the 3-hydroxyvaleryl (3HV) monomer fraction in the copolymer. Using a selection of engineered E. coli strains for batch cultivation with an unrelated carbon source, we achieved high-level P(3HB-co-3HV) production with the 3HV monomer fraction ranging from 3 to 19 mol%, demonstrating the potential industrial applicability of these whole-cell biocatalysts.


Assuntos
Carbono/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Poliésteres/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cupriavidus necator/enzimologia , Glicerol/metabolismo , Poliésteres/química
19.
Sci Rep ; 6: 26228, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641836

RESUMO

Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided.


Assuntos
Clostridium/metabolismo , Clostridium/virologia , Redes e Vias Metabólicas/genética , Análise de Sequência de DNA , Ativação Viral , Sequenciamento Completo do Genoma , Clostridium/efeitos dos fármacos , Clostridium/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Enzimas de Restrição-Modificação do DNA , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia Industrial , Microscopia Eletrônica de Transmissão , Mitomicina/metabolismo , Reação em Cadeia da Polimerase , Prófagos/genética , Prófagos/fisiologia , Vírion/ultraestrutura
20.
Biotechnol Biofuels ; 6(1): 139, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24074355

RESUMO

BACKGROUND: While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli. RESULTS: E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis. CONCLUSIONS: The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA