Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395304

RESUMO

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Organelas/metabolismo , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Camundongos
2.
Traffic ; 23(6): 346-356, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451158

RESUMO

The endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER-anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER-PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we report that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 ], a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain, the efficient lipid transport requires the C2A domain-mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1-mediated lipid transport. In addition to PI(4,5)P2 , the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated that it takes conserved as well as divergent mechanisms with other extend-synaptotagmins. The critical role of lipid composition and Ca2+ reveals that SYT1-mediated lipid transport is highly regulated by signals in response to abiotic stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Sinaptotagmina I/metabolismo
3.
Oncologist ; 29(6): 543-545, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38204337

RESUMO

Sequential regimens in patients with epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) can overcome tyrosine kinase inhibitor (TKI) resistance and maximize clinical benefit. Patients with advanced NSCLC can achieve excellent tumor control after a period of EGFR-TKI treatment. Patients may benefit from additional local treatment, such as surgery or radiation therapy, once the tumor is under control. Here, we present a case of a patient with advanced oligometastatic NSCLC with EGFR mutations who achieved downstaging through sequential EGFR-TKI-based precision medicine allowing resection of residual disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Feminino , Idoso
4.
Ann Hematol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907072

RESUMO

Myelofibrosis is a rare and often fatal hematological neoplasm, and the treatment of myelofibrosis-associated anemia remains suboptimal, with no improved therapies. Luspatercept was shown to display some efficacy in a phase 2 clinical trial for Myelofibrosis with anemia, yet relevant research are limited. Threrfore, data from patients diagnosed with refractory anemic primary or post-essential thrombocythemia/polycythemia vera myelofibrosis, who were treated with luspatercept for at least 9 weeks, were retrospectively collected. Eighteen patients with myelofibrosis treated with luspatercept were enrolled. Median age was 68 years (range, 44-80 years), and 27.8% were males. Ten (55.6%) were transfusion-dependent. Ten (55.6%) were Dynamic International Prognostic Scoring System intermediate-1, and eight (44.4%) were intermediate-2. The median follow-up was 7 (4-16) months. Erythroid response occurred in eight patients (44.4%) at week 12, four patients (30.8%) at week 24, and nine (50%) at the end of follow-up. Patients who were transfusion-dependent and not transfusion-dependent had similar HI-E responses, at different time points (P > 0.05). Patients had a significantly higher hemoglobin level at 12 weeks, 24 weeks, and at the end of follow-up, than at baseline (P = 0.001, P = 0.021, and P = 0.005, respectively). Treatment-related adverse events occurred in five (16.7%) patients, with no serious adverse events. Two (11.1%) patients relapsed at weeks 15 and 31. One patient progressed to acute myeloid leukemia. No patients had died by the end of follow-up. Luspatercept induced a good response in patients with anemic myelofibrosis, with a low relapse rate and good tolerance.

5.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38318638

RESUMO

Chromoblastomycosis (CBM), a chronic, granulomatous, suppurative mycosis of the skin and subcutaneous tissue, is caused by several dematiaceous fungi. The formation of granulomas, tissue proliferation, and fibrosis in response to these pathogenic fungi is believed to be intricately linked to host immunity. To understand this complex interaction, we conducted a comprehensive analysis of immune cell infiltrates, neutrophil extracellular traps (NETs) formation, and the fibrosis mechanism in 20 CBM lesion biopsies using immunohistochemical and immunofluorescence staining methods. The results revealed a significant infiltration of mixed inflammatory cells in CBM granulomas, prominently featuring a substantial presence of Th2 cells and M2 macrophages. These cells appeared to contribute to the production of collagen I and III in the late fibrosis mechanism, as well as NETs formation. The abundance of Th2 cytokines may act as a factor promoting the bias of macrophage differentiation toward M2, which hinders efficient fungal clearance while accelerates the proliferation of fibrous tissue. Furthermore, the expression of IL-17 was noted to recruit neutrophils, facilitating subsequent NETs formation within CBM granulomas to impede the spread of sclerotic cells. Understanding of these immune mechanisms holds promise for identifying therapeutic targets for managing chronic granulomatous CBM.


Assuntos
Armadilhas Extracelulares , Animais , Neutrófilos , Fibrose , Granuloma/veterinária , Imunidade
6.
Exp Cell Res ; 426(1): 113564, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948354

RESUMO

INTRODUCTION: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. Despite an overall downward trend in cancer mortality, HCC-related mortality continues to increase. KIFC3 is involved in cell division and cancers. However, the role of KIFC3 in HCC has yet to be elucidated. METHODS: A total of 36 cases of HCC tissues, 4 HCC cell lines, and TCGA databases were searched to explore the expression of KIFC3 in HCC. Subsequently, Western blot analysis, immunofluorescence, bioinformatic analysis, molecular docking, and Co-IP were performed to investigate the molecular mechanisms of KIFC3 in HCC. RESULT: We found that the expression of KIFC3 was upregulated in HCC, and high KIFC3 expression was related to poor overall survival. In addition, the knockdown of KIFC3 inhibited the proliferation, migration, and invasion of HCC cells in vitro, and impeded the growth of HCC in vivo, while overexpression of KIFC3 in HCC cells revealed the opposite effect. Mechanistically, KIFC3 promotes the progression of HCC through the PI3K/AKT/mTOR signalling. And KIFC3 had slight effect on the protein expression of p-PI3K, p-AKT and p-mTOR in TRIP13-ablated or LY294002-treated HCC cells. The KIFC3 knockdown could further enhance the inhibitory effect of LY294002. CONCLUSION: Our data revealed that KIFC3 is upregulated in HCC and may serve as a novel biomarker for predicting survival in HCC patients. Targeting KIFC3 may serve as a novel therapeutic strategy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
7.
Ann Clin Microbiol Antimicrob ; 23(1): 57, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902740

RESUMO

Chromoblastomycosis (CBM), a chronic fungal infection affecting the skin and subcutaneous tissues, is predominantly caused by dematiaceous fungi in tropical and subtropical areas. Characteristically, CBM presents as plaques and nodules, often leading to scarring post-healing. Besides traditional diagnostic methods such as fungal microscopy, culture, and histopathology, dermatoscopy and reflectance confocal microscopy can aid in diagnosis. The treatment of CBM is an extended and protracted process. Imiquimod, acting as an immune response modifier, boosts the host's immune response against CBM, and controls scar hyperplasia, thereby reducing the treatment duration. We present a case of CBM in Guangdong with characteristic reflectance confocal microscopy manifestations, effectively managed through a combination of itraconazole, terbinafine, and imiquimod, shedding light on novel strategies for managing this challenging condition.


Assuntos
Antifúngicos , Cromoblastomicose , Imiquimode , Itraconazol , Terbinafina , Cromoblastomicose/tratamento farmacológico , Cromoblastomicose/microbiologia , Imiquimode/uso terapêutico , Humanos , Antifúngicos/uso terapêutico , Itraconazol/uso terapêutico , Terbinafina/uso terapêutico , Masculino , Resultado do Tratamento , Microscopia Confocal , Pele/patologia , Pele/microbiologia , Pessoa de Meia-Idade
8.
Environ Res ; 244: 117899, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109953

RESUMO

Fluoride pollution in water has become a global challenge. This challenge especially affects China as a country experiencing serious fluoride pollution. While the have been past studies on the spatial distribution of fluoride, there has been less attention on different forms of fluoride. This study collected 176 samples (60, 40, and 76 ice, water, and sediment samples, respectively) from Lake Ulansuhai during the freezing period. The occurrence and spatial distribution characteristics of fluoride in lake ice-water-sediment were explored using Kriging interpolation, Piper three-line diagram, and Gibbs diagram analysis methods. The migration and transformation of fluoride during the freezing period were revealed and the factors influencing fluoride concentration in the water body were discussed considering the hydrochemical characteristics of lake surface water. The results showed that the average fluoride concentrations in the upper ice, middle ice and lower ice were 0.18, 0.09, and 0.12 mg/L, respectively, decreasing from north to south in the lake. The average concentrations of fluoride in surface water and bottom water were 0.63 and 0.83 mg/L, respectively. The concentrations of fluoride in ice and water were within the World Health Organisation drinking water threshold of 1.50 mg/L and the Class III Chinese surface water standard (GB3838-2002). The average sediment total fluorine was 1344.38 ± 200 mg/kg, significantly exceeding the global average (321 mg/kg) and decreasing with depth. The contents of water soluble, exchangeable, Fe/Mn bound, organic bound, and residual fluorides were 40.22-47.18, 13.24-43.23, 49.52-160.48, and 71.59-173.03 mg/kg, respectively. There was a significant positive correlation between fluoride concentration in ice and that in water. The change in fluoride concentration in water was mainly due to specific climatic and geographical conditions, pH, hydrochemical characteristics and ice sealing. This study is of great significance for the management of high-fluorine lakes in arid and semi-arid areas.


Assuntos
Fluoretos , Poluentes Químicos da Água , Gelo/análise , Lagos/química , Congelamento , Flúor/análise , Monitoramento Ambiental/métodos , Água/química , China , Poluentes Químicos da Água/análise
9.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265087

RESUMO

TiNiCu0.025Sn0.99Sb0.01 is prepared using microwaves. However, an ultra-high electrical conductivity and electronic thermal conductivity are obtained by interstitial Cu and Sb doping, which could not effectively improve the ZT value. We introduce carbon dots (CDs) as a nano-second phase by ball milling to simultaneously optimize the thermoelectric properties. To our best knowledge, this is the first report on half-Heusler/CDs composites. Experimental results show that the introduction of nano-CDs optimizes the carrier concentration and mobility and dramatically improves the Seebeck coefficient through the energy filtering effect. The nano-CDs introduce more point defects, inhibit the grains growth, and form a specific carbon solid solution second phase in the matrix. The lattice thermal conductivity is reduced to the same level as TiNiSn at 1.96 W m-1 K-1 through the synergistic effect of point defects and phase and grain boundaries scattering, and the ZT value reaches a maximum of 0.63 at 873 K.

10.
Cell Mol Life Sci ; 80(3): 77, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853333

RESUMO

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.


Assuntos
Retículo Endoplasmático , Fosfatos de Fosfatidilinositol , Transporte Biológico , Membrana Celular , Rede trans-Golgi/metabolismo , Proteínas de Membrana/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33658332

RESUMO

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/veterinária , Receptores Virais/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Zoonoses Virais/genética , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia , Ligação Viral , Internalização do Vírus
12.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 217-220, 2024 Mar 30.
Artigo em Zh | MEDLINE | ID: mdl-38605625

RESUMO

Objective: The applications of personalized abutments and abutment crown bridge products have increased year by year, but there is no clear requirement for clinical evaluation of the same variety of such products. This study mainly introduces the clinical evaluation concerns of personalized abutments and abutment crown bridge products, in order to provide reference for the declaration and registration of such products. Methods: The clinical evaluation of personalized abutments and crown bridge products are summarized, and the research content of clinical evaluation is clarified. Results: The clinical evaluation requirements that need to be considered by enterprises are introduced. Conclusion: Personalized abutment and abutment crown bridge products can refer to this study when they are launched in China, mainly using in vitro performance comparison tests for equivalence verification.


Assuntos
Prótese Parcial , China
13.
J Biol Chem ; 298(1): 101469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871547

RESUMO

α-Synuclein (α-Syn) is the major protein component of Lewy bodies, a key pathological feature of Parkinson's disease (PD). The manganese ion Mn2+ has been identified as an environmental risk factor of PD. However, it remains unclear how Mn2+ regulates α-Syn aggregation. Here, we discovered that Mn2+accelerates α-Syn amyloid aggregation through the regulation of protein phase separation. We found that Mn2+ not only promotes α-Syn liquid-to-solid phase transition but also directly induces soluble α-Syn monomers to form solid-like condensates. Interestingly, the lipid membrane is integrated into condensates during Mn2+-induced α-Syn phase transition; however, the preformed Mn2+/α-syn condensates can only recruit lipids to the surface of condensates. In addition, this phase transition can largely facilitate α-Syn amyloid aggregation. Although the Mn2+-induced condensates do not fuse, our results demonstrated that they could recruit soluble α-Syn monomers into the existing condensates. Furthermore, we observed that a manganese chelator reverses Mn2+-induced α-Syn aggregation during the phase transition stage. However, after maturation, α-Syn aggregation becomes irreversible. These findings demonstrate that Mn2+ facilitates α-Syn phase transition to accelerate the formation of α-Syn aggregates and provide new insights for targeting α-Syn phase separation in PD treatment.


Assuntos
Amiloide , Amiloidose , Manganês , Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Humanos , Corpos de Lewy/metabolismo , Manganês/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
14.
J Biol Chem ; 298(10): 102470, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087838

RESUMO

Intracellular vesicle fusion requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cognate Sec1/Munc18 (SM) proteins. How SM proteins act in concert with trans-SNARE complexes to promote membrane fusion remains incompletely understood. Munc18c, a broadly distributed SM protein, selectively regulates multiple exocytotic pathways, including GLUT4 exocytosis. Here, using an in vitro reconstituted system, we discovered a SNARE-like peptide (SLP), conserved in Munc18-1 of synaptic exocytosis, is crucial to the stimulatory activity of Munc18c in vesicle fusion. The direct stimulation of the SNARE-mediated fusion reaction by SLP further supported the essential role of this fragment. Interestingly, we found SLP strongly accelerates the membrane fusion rate when anchored to the target membrane but not the vesicle membrane, suggesting it primarily interacts with t-SNAREs in cis to drive fusion. Furthermore, we determined the SLP fragment is competitive with the full-length Munc18c protein and specific to the cognate v-SNARE isoforms, supporting how it could resemble Munc18c's activity in membrane fusion. Together, our findings demonstrate that Munc18c facilitates SNARE-dependent membrane fusion through SLP, revealing that the t-SNARE-SLP binding mode might be a conserved mechanism for the stimulatory function of SM proteins in vesicle fusion.


Assuntos
Fusão de Membrana , Proteínas SNARE , Exocitose , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas SNARE/metabolismo
15.
Microb Pathog ; 180: 106146, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150309

RESUMO

Talaromycosis, namely Talaromyces marneffei infection, is increasing gradually and has a high mortality rate even under antifungal therapy. Although autophagy acts differently on different pathogens, it is a promising therapeutic strategy. However, information on autophagy in macrophages and animals upon infection by T. marneffei is still limited. Therefore, several models were employed here to investigate the role of autophagy in host defense against T. marneffei, including RAW264.7 macrophages as in vitro models, different types of Caenorhabditis elegans and BALB/c mice as in vivo models. We applied the clinical T. marneffei isolate SUMS0152 in this study. T. marneffei-infected macrophages exhibit increased formation of autophagosomes. Further, macrophage autophagy promoted by rapamycin or Earle's balanced salt solution (EBSS) inhibited the viability of intracellular T. marneffei. In vivo, compared with uninfected Caenorhabditis elegans, the wild-type nematodes upregulated the expression of the autophagy-related gene lgg-1 and atg-18, and nematodes carrying GFP reporter were induced to form autophagosomes (GFP::LGG-1) after T. marneffei infection. Furthermore, the knockdown of lgg-1 significantly reduced the survival rate of T. marneffei-infected nematodes. Likewise, the autophagy activator rapamycin reduced the fungal burden and suppressed lung inflammation in a mouse model of infection. In conclusion, autophagy is essential for host defense against T. marneffei in vitro and in vivo. Therefore, autophagy may be an attractive target for developing new therapeutics to treat talaromycosis.


Assuntos
Caenorhabditis elegans , Talaromyces , Animais , Camundongos , Autofagia , Sirolimo/farmacologia
16.
Med Microbiol Immunol ; 212(6): 421-435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796314

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 µM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia , Animais , Camundongos , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Staphylococcus aureus/metabolismo , Modelos Animais de Doenças , Proteínas de Bactérias/metabolismo
17.
J Cardiovasc Pharmacol ; 82(4): 333-343, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506377

RESUMO

ABSTRACT: Many studies have confirmed that macrophage autophagy injury negatively impacts the pathogenesis of atherosclerosis (AS). Meanwhile, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway affects AS progression by regulating macrophage autophagy. We previously reported that the herbal formula San Jie Tong Mai Fang (SJTMF) elicits lipid regulatory and anti-inflammatory properties. Hence, the current study used an ApoE -/- high-fat diet-fed mouse model to determine whether SJTMF elicits protective effects against AS progression by means of the regulation of macrophage autophagy through the PI3K/AKT/mTOR signaling pathway. Our results show that SJTMF reduced the number of atherosclerotic plaques, foam cell formation, and intimal thickness in mouse aorta. In addition, SJTMF improved blood lipid metabolism and inflammatory levels in mice. We also observed that SJTMF caused macrophages to be polarized toward the M2 phenotype through the inhibition of the PI3K/AKT/mTOR signaling pathway. In addition, the abundances of LC3-II/I and beclin1 proteins-key autophagy molecules-were increased, whereas that of p62 was decreased, resulting in the promotion of macrophage autophagy. Taken together, these findings indicate that SJTMF may regulate the polarization of macrophages by inhibiting the PI3K/AKT/mTOR signaling pathway, thereby reducing atherosclerotic plaque damage in ApoE -/- mice, thereby promoting macrophage autophagy and eliciting a significant antiarteriosclerosis effect. Hence, SJTMF may represent a promising new candidate drug for the treatment of AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Macroautofagia , Serina-Treonina Quinases TOR/metabolismo , Camundongos Knockout para ApoE , Transdução de Sinais , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/genética , Autofagia , Apolipoproteínas E/farmacologia , Mamíferos/metabolismo
18.
Phytother Res ; 37(8): 3467-3480, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37288949

RESUMO

Gastric cancer (GC) is often diagnosed in the advanced stages with a poor prognosis. Thymoquinone (TQ) is known for its antitumor activity; however, the specific mechanism in GC remains unknown. In our study, TQ inhibited GC cell proliferation and induced apoptosis and autophagy in a concentration-dependent manner. Transmission electron microscopy showed increased autophagosome formation in GC cells treated with TQ. Meanwhile, the LC3B puncta and LC3BII protein levels were significantly increased in GC cells, while p62 expression was significantly decreased. The autophagy inhibitor, Bafilomycin A1 enhanced TQ-inhibited proliferation and TQ-induced apoptosis, suggesting that TQ-induced autophagy has a protective effect on GC cells. Furthermore, TQ decreased the phosphorylation levels of phosphatidylinositol-4,5-bisphosphate 3 kinase (PI3K), protein kinase B (Akt), and mechanistic target of rapamycin (mTOR). The PI3K agonist partially rescued TQ-induced autophagy and apoptosis. Finally, in vivo experiments showed that TQ could inhibit tumor growth and promote apoptosis and autophagy. This study provides new insights into the specific mechanism for the anti-GC effect of TQ. TQ inhibits the proliferation of GC cells and induces apoptosis and protective autophagy by inhibiting the PI3K/Akt/mTOR pathway. The results suggest that the combination of TQ and autophagy inhibitors might be a potential chemotherapeutic strategy for GC.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Proliferação de Células
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1197-1203, 2023 Oct 10.
Artigo em Zh | MEDLINE | ID: mdl-37730217

RESUMO

OBJECTIVE: To assess the value of non-invasive prenatal testing (NIPT) for the identification of numerical and structural chromosomal abnormalities and copy number variations (CNVs) in fetuses. METHODS: 46 197 pregnant women undergoing NIPT at the Prenatal Diagnosis Center of Chenzhou First People's Hospital from January 2018 to December 2021 were selected as the study subjects. Positive cases were subjected to chromosomal karyotyping and copy number variation sequencing (CNV-seq) following amniocentesis. RESULTS: Nearly 50% of common chromosomal aneuploidies were found in the elder pregnant women. Among these, sex chromosome aneuploidies were mainly found in pregnant women with advanced age as well as borderline risks by serological screening. Rare autosomal aneuploidies and CNVs were mainly found in those with borderline or high risks by serological screening. The positive predictive values (PPV) for fetal chromosomal abnormalities indicated by NIPT were as follows: T21 (92.37%, 109/118), T18 (53.85%, 14/26), sex chromosome aneuploidies (45.04%, 59/131), T13 (34.62%, 9/26), CNVs (29.17%, 14/48), and rare autosomal aneuploidies (2.60%, 2/77). CONCLUSION: NIPT has a high detection rate for T21, T18, T13 and sex chromosome aneuploidies. It can also detect rare autosomal aneuploidies and CNVs, including some rare structural abnormalities, though verification is required by analyzing amniotic fluid samples.


Assuntos
Transtornos Cromossômicos , Variações do Número de Cópias de DNA , Gravidez , Feminino , Humanos , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Aneuploidia , Feto
20.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(6): 674-679, 2023 Nov 30.
Artigo em Zh | MEDLINE | ID: mdl-38086727

RESUMO

In recent years, emerging technology medical devices have developed rapidly. How to more scientifically and more efficiently regulate these novel medical devices so as to improve access to advanced medical technology while ensuring safety and effectiveness is a new challenge faced by regulatory authorities, and is also the core topic of regulatory science. New tools, new standards and new methods are important means to achieve regulatory science. "Medical Device Development Tool" proposed by the U.S. FDA is a novel medical device regulatory science tool, which can help medical device developers to predict and evaluate product performance more efficiently. It is also helpful for regulatory authorities to make regulatory decisions more efficiently. This study introduces the concept, qualification process, role of MDDT in medical device regulation and MDDT examples, and makes some discussion on the device evaluation from the perspective of reliability and validity. MDDT can facilitate the developing of novel medical device.


Assuntos
Legislação de Dispositivos Médicos , Tecnologia , Estados Unidos , Reprodutibilidade dos Testes , United States Food and Drug Administration , Aprovação de Equipamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA