Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 615(7952): 405-410, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813970

RESUMO

An outstanding challenge in condensed-matter-physics research over the past three decades has been to understand the pseudogap (PG) phenomenon of the high-transition-temperature (high-Tc) copper oxides. A variety of experiments have indicated a symmetry-broken state below the characteristic temperature T* (refs. 1-8). Among them, although the optical study5 indicated the mesoscopic domains to be small, all these experiments lack nanometre-scale spatial resolution, and the microscopic order parameter has so far remained elusive. Here we report, to our knowledge, the first direct observation of topological spin texture in an underdoped cuprate, YBa2Cu3O6.5, in the PG state, using Lorentz transmission electron microscopy (LTEM). The spin texture features vortex-like magnetization density in the CuO2 sheets, with a relatively large length scale of about 100 nm. We identify the phase-diagram region in which the topological spin texture exists and demonstrate the ortho-II oxygen order and suitable sample thickness to be crucial for its observation by our technique. We also discuss an intriguing interplay observed among the topological spin texture, PG state, charge order and superconductivity.

2.
Small ; : e2402729, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077957

RESUMO

Interface design has enormous potential for the enhancement of interfacial polarization and microwave absorption properties. However, the construction of interfaces is always limited in components of a single dimension. Developing systematic strategies to customize multidimensional interfaces and fully utilize advantages of low-dimensional materials remains challenging. Two-dimensional transition metal dichalcogenides (TMDCs) have garnered significant attention owing to their distinctive electrical conductivity and exceptional interfacial effects. In this study, a series of hollow TMDCs@C fibers are synthesized via sacrificial template of CdS and confined growth of TMDCs embedded in the fibers. The complex permittivity of the hollow TMDCs@C fibers can be adjusted by tuning the content of CdS templates. Importantly, the multidimensional interfaces of the fibers contribute to elevating the microwave absorption performance. Among the hollow TMDCs@C fibers, the minimum reflection loss (RLmin) of the hollow MoS2@C fibers can reach -52.0 dB at the thickness of 2.5 mm, with a broad effective absorption bandwidth of 4.56 GHz at 2.0 mm. This work establishes an alternative approach for constructing multidimensional coupling interfaces and optimizing TMDCs as microwave absorption materials.

3.
J Nanobiotechnology ; 19(1): 410, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876141

RESUMO

Chemodynamic therapy (CDT) has aroused extensive attention for conquering cancers because of its high specificity and low invasiveness. Quick generation of hydroxyl radicals (·OH) during CDT could induce more irreparable damage to cancer cells. The generation rate of ·OH could be magnified via the selection of suitable nanocatalysts or under the assistance of exogenous thermal energy from photothermal therapy (PTT). Here, we construct a kind of monodisperse core-shell Au@Cu2-xSe heterogeneous metal nanoparticles (NPs) for PTT boosted CDT synergistic therapy. Due to the localized surface plasmon resonance (LSPR) coupling effect in the core-shell structure, the photothermal conversion efficiency of Au@Cu2-xSe NPs is up to 56.6%. The in situ generated heat from photothermal can then accelerate the Fenton-like reaction at Cu+ sites to produce abundant ·OH, which will induce apoptotic cell death by attacking DNA, contributing to a heat-boosted CDT. Both in vitro and in vivo results showed that after this synergistic therapy, tumors could be remarkably suppressed. Guided by photoacoustic (PA) and computed tomography (CT) imaging, the therapeutic effects were more specified. Our results revealed that PA and CT dual-imaging-guided PTT boosted CDT synergistic therapy based on core-shell Au@Cu2-xSe NPs is an effective cancer treatment strategy.


Assuntos
Nanocompostos/química , Neoplasias/diagnóstico por imagem , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Tomografia Computadorizada por Raios X , Animais , Linhagem Celular Tumoral , Cobre/química , Feminino , Ouro/química , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Técnicas Fotoacústicas , Fototerapia
4.
Small ; 14(7)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251416

RESUMO

Herein, Ni and Zn elements are doped simultaneously in MnCO3 and microspheric Mnx Niy Znz CO3 is successfully obtained. Atomic mapping images reveal that the Ni and Zn elements have been successfully doped in MnCO3 and thus the prepared sample is not a mixture of MnCO3 , NiCO3 , and ZnCO3 . It is the first time that the atomic mapping images of ternary transition metal carbonates have been demonstrated so far. The scanning transmission electron microscopy - annular bright field (STEM-ABF) image successfully confirms the formation of oxygen vacancies in Mnx Niy Znz CO3 , which is beneficial to improve the electrical conductivity. The evolution of the microstructure from crystal to amorphization during cycling process confirmed by the fast Fourier transform patterns effectively lowers the overpotential of the conversion reaction and accelerates the conversion between Mn2+ and much higher valence of Mn element, contributing to the superior capacity of Mnx Niy Znz CO3 electrode. As anode material for lithium-ion batteries, the prepared Mnx Niy Znz CO3 exhibits excellent long-term cycling stability and outstanding rate performance, delivering the superior reversible discharge capacities of 1066 mA h g-1 at 500 mA g-1 after 500 cycles and 760 mA h g-1 at 1 A g-1 after 1000 cycles. It is the first time that Mnx Niy Znz CO3 has been synthesized and used as anode for lithium-ion batteries so far.

5.
Small ; 14(32): e1801007, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30009580

RESUMO

The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze-drying. The sandwich-like architecture possesses multiple functions as a flexible anode for lithium-ion batteries. Micrometer-sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano-sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO-wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g-1 over 630 cycles at 2 A g-1 , 608.5 mAh g-1 over 1000 cycles at 7.5 A g-1 ). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.

6.
Chemistry ; 19(21): 6746-52, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23519995

RESUMO

A facile and efficient strategy for the synthesis of hierarchical yolk-shell microspheres with magnetic Fe3O4 cores and dielectric TiO2 shells has been developed. Various Fe3O4@TiO2 yolk-shell microspheres with different core sizes, interstitial void volumes, and shell thicknesses have been successfully synthesized by controlling the synthetic parameters. Moreover, the microwave absorption properties of these yolk-shell microspheres, such as the complex permittivity and permeability, were investigated. The electromagnetic data demonstrate that the as-synthesized Fe3O4@TiO2 yolk-shell microspheres exhibit significantly enhanced microwave absorption properties compared with pure Fe3O4 and our previously reported Fe3O4@TiO2 core-shell microspheres, which may result from the unique yolk-shell structure with a large surface area and high porosity, as well as synergistic effects between the functional Fe3O4 cores and TiO2 shells.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36387358

RESUMO

Objective: Based on a retrospective cohort study, to investigate the value of rivaroxaban combined with ticagrelor in antithrombotic therapy after PCI in patients with nonvalvular atrial fibrillation with acute coronary syndrome. Methods: A total of 60 patients from January 2019 to May 2021 accepted therapy with antithrombotic therapy after PCI. The patients treated with ticagrelor were set as the control group, and those given rivaroxaban combined with ticagrelor were set as the research group. The curative effect, myocardial level, TIMI blood flow grade, platelet aggregation rate, and the incidence of cardiovascular events were taken from the comparisons. Results: The research group's therapeutic impact was superior to the control group's therapeutic impact, and the value was higher. After treatment, the myocardial levels of the two groups decreased, and the levels of troponin I, creatine kinase isoenzyme, and hypersensitive C-reactive protein in the research group were greatly less than those in the control group, and the difference was statistically significant (P < 0.05). After operation, the TIMI blood flow classification in the experimental group was better than that in the control group, and the difference was statistically significant (P < 0.05). The experimental group's platelet aggregation incidence was considerably lower than the control group's platelet aggregation incidence at 0.5 and 2 hours following surgery, and the difference was statistically significant (P < 0.05). The incidence of acute myocardial infarction, cardiogenic death, and intractable angina pectoris in the research group was significantly lower than that in the control group. Conclusion: Rivaroxaban combined with ticagrelor in the treatment of nonvalvular atrial fibrillation with acute coronary syndrome after percutaneous coronary intervention; the TIMI blood flow grade is better than ticagrelor, which is of great significance to reduce mortality and has high safety in clinical application.

8.
ACS Nano ; 16(1): 1150-1159, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34957827

RESUMO

Two-dimensional materials, especially the newly emerging MXene, have attracted numerous interests in the fields of energy conversion/storage and electromagnetic shielding/absorption. However, the inherently inevitable aggregation and absence of magnetic loss of MXene considerably limit its electromagnetic absorption application. The introduction of magnetic component and favorable structural engineering are the alternatives to improve the microwave absorption (MA) performance. Herein, we report a spheroidization strategy to assemble double-shell MXene@Ni microspheres, where the commonly lamellar MXene are reshaped into three-dimensional microspheres that provide the substrate for oriented growth of Ni nanospikes. Whereas this structural feature offers massive accessible active surfaces that effectively promote the dielectric loss ability, the introduction of magnetic Ni nanospikes enables the additional magnetic loss capacity. Benefiting from these merits, the synthesized 3D MXene@Ni microspheres exhibit superior MA performance with the minimum reflection loss value of -59.6 dB at an ultrathin thickness (∼1.5 mm) and effective absorption bandwidth of 4.48 GHz. Moreover, the electron holography results reveal that the high-density anisotropy magnetism plays an important role in the improvement of MA performance, which provides an insight for the design of MXene-based materials as high-efficient microwave absorbers.

9.
ACS Appl Mater Interfaces ; 12(28): 31225-31234, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551494

RESUMO

Tumor-associated macrophages (TAMs) were a major component of tumor, which comprised up to 50% of tumor mass, and correlated with poor prognosis in more than 80% of cases. TAMs were resistant to radiotherapy and chemotherapy, and radiation could further activate TAMs to promote tumor progression. Herein, we explored a kind of Bi-based mesoporous upconversion nanophosphor (UCNP) loaded with doxorubicin (UCNP-DOX) to elicit immunogenic tumor cell death and repolarize TAMs to an antitumor M1-like type for strengthening the tumor-specific antitumor immune effects of X-ray radiotherapy. The repolarization effect of UCNP-DOX with X-ray was confirmed in THP-1 cell line, in vivo mouse model, and hydrothorax of a non-small-cell lung carcinoma patient. Moreover, the UCNP-DOX and X-ray radiation could elicit immunogenic tumor necrosis, presenting more tumor antigens for tumor-specific immune response. In a cell co-incubation system, activated macrophages could significantly inhibit cancer colony formation, migration, and invasion. After treatment, xenografted tumor in mice was also found to be significantly regressed and presented substantial CD8-positive T cells. This study opens the door to further enhance the abscopal effects and inhibit the metastasis in radiotherapy.


Assuntos
Doxorrubicina/química , Radiação Ionizante , Animais , Bismuto/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Radiossensibilizantes/uso terapêutico , Células THP-1 , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos da radiação
10.
J Colloid Interface Sci ; 493: 385-392, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28131084

RESUMO

The physical properties of nanometer scale semiconductors are known to be sensitively influenced by their aspect ratios, but the intrinsic mechanisms still remain unclear. Shape-controlled anisotropic PbSe nanorods were obtained by means of the addition of MnCl2, and the aspect ratio of the nanorods can be continuously tuned from 1 to 10 by simply modulating the amount of chloride ions. It was demonstrated that an optimized concentration of Cl- anions is about 0.04mmol, which controls the competition between thermodynamics and kinetics mechanisms. The emission peaks of the infrared absorbance and photoluminescence spectra were significantly tuned from 1664nm to 1840nm and from 1459nm to 1938nm only by the aspect ratios, respectively. A strong electric dipole phenomenon localized onside the surface of PbSe nanorods terminated by Pb2+ charge was found by using high-spatial-resolution off-axis electron holography, which was furthermore evidenced by the quantitative analysis of the mean inner potential and the surfaces charge. The charge intensity depended on the aspect ratio of PbSe nanorods. The results provide clear evidence that the energy gap interval reduces as a result of the increasing of conduction charge amounts. A novel strategy to facilely shift the peak position of absorbance and photoluminescence emission was therefore proposed.

11.
Asian Pac J Trop Med ; 9(1): 96-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26851796

RESUMO

OBJECTIVE: To observe the effects of angiotensin Ⅱ(Ang Ⅱ) perfusion on transmural heterogeneity of Cx43 expression in the rabbit model with acute myocardial ischemia reperfusion (MIR), and investigate the role of rennin-angiotensin system in malignant ventricular arrhythmia induced by MIR. METHODS: Twenty rabbits were randomly divided into MIR group (n = 10) and Ang Ⅱ group (n = 10). MIR model was produced with traditional ligation and opening of the anterior descending coronary artery in all animal. The hearts in vitro in the MIR group and the Ang Ⅱ group were perfused with simply improved Tyrode's solution and containing Ang Ⅱ Tyrode's solution respectively. 90% monophasic action potential repolarization duration, transmural dispersion of repolarization, Cx43 protein (Cx43-pro) and mRNA (Cx43-Cq) expression in subepicardial, midmyocardial and subendocardial myocardium were measured in both groups. The greatest differences of Cx43-pro and Cx43-Cq among three myocardial layers were calculated and shown with ΔCx43-pro and ΔCx43-Cq respectively. RESULTS: After Ang Ⅱ perfusion, 90% monophasic action potential repolarization duration among three myocardial layer were significantly prolonged (P < 0.05 and P < 0.01), and transmural dispersion of repolarization also significantly increased compared with the MIR group (P < 0.05). Compare with the MIR group, three myocardial Cx43-pro and Cx43-Cq expression in the Ang Ⅱ group were significantly decreased (P < 0.05 and P < 0.01), but ΔCx43-pro and ΔCx43-Cq were significant increased. CONCLUSIONS: Renin-angiotensin system increases transmural heterogeneity of Cx43 expression in the rabbit model with MIR by Ang Ⅱ, and enlarge transmural dispersion of repolarization among three myocardial layers of left ventricular which induces malignant ventricular arrhythmia.

12.
ACS Cent Sci ; 1(7): 400-8, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27162998

RESUMO

Oriented self-assembly between inorganic nanocrystals and surfactants is emerging as a route for obtaining new mesocrystalline semiconductors. However, the actual synthesis of mesoporous semiconductor mesocrystals with abundant surface sites is extremely difficult, and the corresponding new physical and chemical properties arising from such an intrinsic porous mesocrystalline nature, which is of fundamental importance for designing high-efficiency nanostructured devices, have been rarely explored and poorly understood. Herein, we report a simple evaporation-driven oriented assembly method to grow unprecedented olive-shaped mesoporous TiO2 mesocrystals (FDU-19) self-organized by ultrathin flake-like anatase nanocrystals (∼8 nm in thickness). The mesoporous mesocrystals FDU-19 exhibit an ultrahigh surface area (∼189 m(2)/g), large internal pore volume (0.56 cm(3)/g), and abundant defects (oxygen vacancies or unsaturated Ti(3+) sites), inducing remarkable crystallite-interface reactivity. It is found that the mesocrystals FDU-19 can be easily fused in situ into mesoporous anatase single crystals (SC-FDU-19) by annealing in air. More significantly, by annealing in a vacuum (∼4.0 × 10(-5) Pa), the mesocrystals experience an abrupt three-dimensional to two-dimensional structural transformation to form ultrathin anatase single-crystal nanosheets (NS-FDU-19, ∼8 nm in thickness) dominated by nearly 90% exposed reactive (001) facets. The balance between attraction and electrostatic repulsion is proposed to determine the resulting geometry and dimensionality. Dye-sensitized solar cells based on FDU-19 and SC-FDU-19 samples show ultrahigh photoconversion efficiencies of up to 11.6% and 11.3%, respectively, which are largely attributed to their intrinsic single-crystal nature as well as high porosity. This work gives new understanding of physical and chemical properties of mesoporous semiconductor mesocrystals and opens up a new pathway for designing various single-crystal semiconductors with desired mesostructures for applications in catalysis, sensors, drug delivery, optical devices, etc.

13.
ACS Nano ; 8(10): 10455-60, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25264601

RESUMO

Supported metal nanoparticle (NP) catalysts have been widely used in many industry processes and catalytic reactions. Catalyst deactivation is mainly caused by the sintering of supported metal NPs. Hence, understanding the metal NPs' sintering behaviors has great significance in preventing catalyst deactivation. Here we report the metal particle migration inside/between mesochannels by scanning transmission electron microscopy and electron energy loss spectroscopy via an in situ TEM heating technique. A sintering process is proposed that particle migration predominates, driven by the difference of gravitational potential from the height of the uneven internal surface of the mesopores; when the distance of the gold nanoparticles with a size of about 3 and 5 nm becomes short after migration, the coalescence process is completed, which is driven by an "octopus-claw-like" expansion of a conduction electron cloud outside the Au NPs. The supports containing an abundance of micropores help to suppress particle migration and coalescence. Our findings provide the understanding toward the rational design of supported industrial catalysts and other nanocomposites with enhanced activity and stability for applications such as batteries, catalysis, drug delivery, gas sensors, and solar cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Microscopia Eletrônica de Transmissão
14.
Nanoscale ; 6(11): 5782-90, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24740716

RESUMO

The shape anisotropy of the nanostructured nanorattles is one of the key factors that affect their microwave absorption performance. In the present study, the microwave absorption performance of ellipsoidal Fe3O4@CuSiO3 nanorattles with different aspect ratios was investigated. Results demonstrated that the ellipsoidal nanorattles with the aspect ratio of 3-4 exhibited about 20% enhancement of microwave absorption intensity compared with spherical Fe3O4@CuSiO3. Generally, as the aspect ratio increased from 2.0 to 3.5, the microwave absorption peak was enhanced monotonously from -20 dB to -30 dB. It was found that the ellipsoidal nanorattles with larger aspect ratio exhibited higher coercivity and double resonance peaks of the real part of complex permittivity, resulting in the improvement of microwave absorption performance. Our research gives insights into the understanding of the anisotropic effect of nanorattles on microwave absorption performance.

15.
ACS Appl Mater Interfaces ; 5(7): 2503-9, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23474005

RESUMO

Yolk-shell microspheres with magnetic Fe3O4 cores and hierarchical copper silicate shells have been successfully synthesized by combining the versatile sol-gel process and hydrothermal reaction. Various yolk-shell microspheres with different core size and shell thickness can be readily synthesized by varying the experimental conditions. Compared to pure Fe3O4, the as-synthesized yolk-shell microspheres exhibit significantly enhanced microwave absorption properties in terms of both the maximum reflection loss value and the absorption bandwidth. The maximum reflection loss value of these yolk-shell microspheres can reach -23.5 dB at 7 GHz with a thickness of 2 mm, and the absorption bandwidths with reflection loss lower than -10 dB are up to 10.4 GHz. Owing to the large specific surface area, high porosity, and synergistic effect of both the magnetic Fe3O4 cores and hierarchical copper silicate shells, these unique yolk-shell microspheres may have the potential as high-efficient absorbers for microwave absorption applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA