Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8025): 528-535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048826

RESUMO

Conjugated polymers promise inherently flexible and low-cost thermoelectrics for powering the Internet of Things from waste heat1,2. Their valuable applications, however, have been hitherto hindered by the low dimensionless figure of merit (ZT)3-6. Here we report high-ZT thermoelectric plastics, which were achieved by creating a polymeric multi-heterojunction with periodic dual-heterojunction features, where each period is composed of two polymers with a sub-ten-nanometre layered heterojunction structure and an interpenetrating bulk-heterojunction interface. This geometry produces significantly enhanced interfacial phonon-like scattering while maintaining efficient charge transport. We observed a significant suppression of thermal conductivity by over 60 per cent and an enhanced power factor when compared with individual polymers, resulting in a ZT of up to 1.28 at 368 kelvin. This polymeric thermoelectric performance surpasses that of commercial thermoelectric materials and existing flexible thermoelectric candidates. Importantly, we demonstrated the compatibility of the polymeric multi-heterojunction structure with solution coating techniques for satisfying the demand for large-area plastic thermoelectrics, which paves the way for polymeric multi-heterojunctions towards cost-effective wearable thermoelectric technologies.

2.
Acc Chem Res ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295316

RESUMO

ConspectusIn recent decades, there has been rapid development in the field of polymer semiconductors, particularly those based on conjugated donor-acceptor (D-A) polymers exhibiting high charge mobilities. Furthermore, the application of polymer semiconductors has been successfully extended to a wide range of functional devices, including sensors, photodetectors, radio frequency identification (RFID) tags, electronic paper, skin electronics, and artificial synapses. Over the past few years, there has been a growing focus on stimuli-responsive polymer semiconductors, which have the potential to impart additional functionalities to conventional field-effect transistors, garnering increased attention within the research community. In this context, phototunable polymer semiconductors have received significant attention due to their ability to utilize light as an external stimulus, enabling remote control of device performance with high spatiotemporal resolution. Meanwhile, integration of field-effect transistors with polymer semiconductors can enable the realization of complex functions. To achieve this, precise and controllable patterning of polymer semiconductors becomes essential. In this Account, we discuss our research findings in the context of phototunable and photopatternable polymer semiconductors. These developments encompass the following key aspects: (i) polymer semiconductors, such as poly(diketopyrrolopyrrole-quaterthiophene) (PDPP4T), exhibit phototunability when blended with the photochromic compound hexaarylbiimidazole (HABI). The photo/thermal-responsive field-effect transistors (FETs) can be fabricated using blending thin films. Remarkably, these photo/thermal-responsive transistors can function as photonically programmable and thermally erasable nonvolatile memory devices. (ii) By incorporating photoswitchable groups like azo and spiropyran into the side chains of conjugated D-A polymers, we can create phototunable polymer semiconductors. The reversible isomerization of azo and spiropyran groups significantly influences the charge transport properties of these polymer semiconductors. Consequently, the performance of the resulting FETs can be reversibly tuned through UV/visible or near-infrared light (NIR) irradiation. Notably, the incorporation of two distinct azo groups into the side chains leads to polymer semiconductors with tristable semiconducting states, offering the ability to logically control device performance using light irradiation at three different wavelengths. (iii) Photopatterning of p-type, n-type, and ambipolar semiconductors featuring alkyl side chains can be achieved using a diazirine-based, four-armed photo-cross-linker (4CNN) with a loading concentration of no more than 3% (w/w). Furthermore, the semiconducting performances of FETs with patterned thin films were found to be satisfactorily uniform. Importantly, the cross-linked thin films are robust and show good resistance to organic solvents, which is useful for fabricating all-solution processable multilayer electronic devices. (iv) The introduction of azide groups into the side chains of conjugated polymers results in a single-component semiconducting photoresist. The presence of azide groups renders the side chains with photo-cross-linking ability, enabling the successful formation of uniform patterns, even as small as 5 µm, under UV light irradiation. Benefiting from the single component feature, field-effect transistors with individual patterned thin films display satisfactorily uniform performances. Moreover, this semiconducting photoresist has proven effective for efficiently photopatterning other polymer semiconductors, demonstrating its versatility.

3.
J Neurosci ; 43(44): 7376-7392, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709540

RESUMO

The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats, it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTM revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.SIGNIFICANCE STATEMENT Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTM revealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.


Assuntos
Sinais (Psicologia) , Motivação , Ratos , Masculino , Animais , Neurônios Dopaminérgicos , Ratos Sprague-Dawley , Dopamina , Ratos Long-Evans , Recompensa
4.
Small ; 20(37): e2402993, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750614

RESUMO

2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.

5.
Opt Lett ; 49(20): 5933-5936, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404575

RESUMO

Ceramic phosphors have high thermal conductivity and high thermal stability, showing great potential for use in laser lighting. However, it is difficult to further improve the forward efficiency in transmissive mode because of the arbitrarily emitting ceramic phosphors and light loss by secondary optical components. Here, an effective design of rod-shaped LuAG:Ce transparent ceramics was proposed, and the silicone encapsulated ceramic-based devices could operate stably under 3.5 W laser excitation, possessing a luminous efficiency of 150-180 lm/W, far exceeding the level of existing commercial transmissive mode. Besides, because of the gradual absorption of blue light and the gradient distribution of heat, the rod-shaped LuAG:Ce transparent ceramics could bear a power density of 46 W/mm2 without luminous saturation, and the thermal-induced luminous degradation only accounted for 7% under a 15 min operation. The ceramic-based laser lighting sources with low divergence angle (∼4°) and uniform spatial distribution were obtained. Our optimized transparent ceramic rod and encapsulation scheme provided a solution to improve the efficiency of a transmissive mode for laser lighting.

6.
Chemistry ; : e202402977, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177072

RESUMO

Doping polycyclic aromatic hydrocarbons with heteroatoms enables manipulation of their electronic structures. Herein, the structures and properties of phosphorus (P) doped heterosumanenes (HSEs) are regulated by varying the valence states of P-dopant. The phosphine sulfide (PV) and chalcogens (S, Se, Te) co-doped HSEs (1-3) are reduced to trivalent phosphorus (PIII) doped analogues 4-6. Then, the PIII-dopants on 4-6 are converted to phosphonium salts (R4P+), giving 7-9. The valence states of P-dopant show great influence on molecular geometries and electronic structures. Taking P and S co-doped HSEs as example, bowl-depths increase in the order of 1 (PV)<7 (R4P+)<4 (PIII), and the HOMO energy levels and HOMO-LUMO gaps increase to be 7<1<4. Consistent with the theoretical calculation, the first oxidation potentials decrease and the absorption/emission bands show blue shift from 7 to 1 to 4. The transformation of PV to PIII leads to large variations on the coordination with Ag+, owing to the alteration of coordination site from P=S to PIII. The phosphonium salts show ring-opening of phosphole rings under electrochemical reduction. It is found that chalcogen atoms play pivotal roles on coordination patterns of coordination complexes and the conversion rates of ring-opening reactions.

7.
Angew Chem Int Ed Engl ; 63(12): e202319587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226832

RESUMO

Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.

8.
Angew Chem Int Ed Engl ; : e202414231, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136326

RESUMO

Integration of spirocycles with buckybowls is a promising strategy to construct three-dimensional (3D) curved π-systems and to endow distinctive physicochemical features arising from buckybowls. Herein, a series of carbon-bridged spiro-type heterosumanenes (spiro-HSEs) were synthesized by combining 9,9'-spirobifluorene and dichalcogenasumanenes (DCSs). It is found that spiro-conjugation plays an important role in the geometric and electronic structures of spiro-HSEs. The bowl depth of DCSs moiety becomes larger in the spiro-HSEs. Owing to the Jahn-Teller (J-T) effect, two DCSs segments of spiro-HSEs have different bowl depths accompanied with the unequal distribution of charge in radical cation state. Taking advantage of the typical reactions of DCSs, selective transformations of spiro-HSEs have been adopted in accordance to the nature of chalcogen atoms (S, Se, Te) to bestow the value-added functionalities. The emissive property is enhanced by converting the thiophene rings of S-doped spiro-HSE into thiophene S,S-dioxides. A chiroptical polycycle could be produced by ring-opening of the edge benzene of Se-doped spiro-HSE. The covalent adduct of Te-doped spiro-HSE with Br2 forms non-centrosymmetric halogen-bonded networks, resulting in the high performance second-order nonlinear optics (NLO).

9.
J Am Chem Soc ; 145(24): 13008-13014, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37285283

RESUMO

Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.

10.
J Am Chem Soc ; 145(39): 21679-21686, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747934

RESUMO

The charge transport through supramolecular junctions exhibits unique quantum interference (QI) effects, which provide an opportunity for the design of supramolecular transistors. Benefiting from the configuration dependence of QI, configuration control of the supramolecular assemblies to demonstrate the QI features is a key but challenging step. In this work, we fabricated the supramolecular transistors and investigated the charge transport through the conducting channel of the individual π-stacked thiophene/phenylene co-oligomers (TPCOs) using the electrochemically gated scanning tunneling microscope break junction technique. We controlled the configuration of the supramolecular channel and switched the QI features between the anti-resonance and resonance states of the supramolecular channels. We observed the supramolecular transistor with its on/off ratio above 103 (∼1300), a high gating efficiency of ∼165 mV/dec, a low off-state leakage current of ∼30 pA, and the channel length scaled down to <2.0 nm. Density functional theory calculations suggested that the QI features in π-stacked TPCOs vary depending on the supramolecular architecture and can be manipulated efficiently by fine-tuning the supramolecular configurations. This work reveals the potential of the supramolecular channels for molecular electronics and provides a fundamental understanding of intermolecular charge transport.

11.
Opt Express ; 31(15): 24914-24925, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475307

RESUMO

Ceramic phosphors are widely considered the next-generation phosphor material for white LED/LD lighting, and a wide spectrum is a key factor in improving the CRI of lighting sources. In this paper, a novel, to our knowledge, barcode-structured YAG:Ce/YAG:Ce,Mn ceramic phosphor was designed and fabricated. The lighting sources with the CRI value of 73.5 and 68.9 were obtained under the excitation of blue LEDs and blue LDs, respectively. Simultaneously, thanks to the effective supplementary emission from a red LD, the CRI of the ceramic-based lighting source reached 81.8 under blue LD excitation. Specifically, the microstructure and luminescent property of ceramic phosphors with different thicknesses and ion doping concentrations were systematically studied. Besides, by changing the blue power from 0.52 W to 2.60 W, the CCT of the laser lighting source with the encapsulation of optimized YAG:Ce/YAG:Ce,Mn ceramic phosphors ranged from 3928 K to 5895 K, while the CRI always maintained above 80. The above results indicate that barcode-structured Ce:YAG/Ce,MnYAG ceramic phosphor is a candidate to achieve a high CRI and ican be applied to various lighting occasions.

12.
Chemistry ; 29(72): e202303085, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877318

RESUMO

Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.

13.
Chemistry ; 29(19): e202203361, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36449331

RESUMO

Conjugated polymers with high charge mobilities have drawn increasing attention in organic field-effect transistors (OFETs) in recent years. However, OFETs of conjugated polymers with high mobility and good device stability remain a challenge. In this article, we report a hyperbranched polymer approach to improve the charge mobility and device stability. Three hyperbranched diketopyrrolopyrrole-based polymers were designed and synthesized via linear alkyl side-chain linkers. The results show that 2D topological hyperbranched polymers form stable thin film microstructures, and thus improve the device stability, since the conjugated moiety is interconnected by linear alkyl chain. Besides, the incorporation of linear alkyl chain instead of branching alkyl one reduce steric hindrance, and improve the microstructure ordering as well as the charge mobility. Bar-coated OFETs result demonstrates that the devices mobilities and operational stabilities (bias stability and bending resistance) are both improved. All these indicate that hyperbranched polymer is a potential candidate for future application.

14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 736-742, 2023 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-37666764

RESUMO

Electrocardiogram (ECG) signal is an important basis for the diagnosis of arrhythmia and myocardial infarction. In order to further improve the classification effect of arrhythmia and myocardial infarction, an ECG classification algorithm based on Convolutional vision Transformer (CvT) and multimodal image fusion was proposed. Through Gramian summation angular field (GASF), Gramian difference angular field (GADF) and recurrence plot (RP), the one-dimensional ECG signal was converted into three different modes of two-dimensional images, and fused into a multimodal fusion image containing more features. The CvT-13 model could take into account local and global information when processing the fused image, thus effectively improving the classification performance. On the MIT-BIH arrhythmia dataset and the PTB myocardial infarction dataset, the algorithm achieved a combined accuracy of 99.9% for the classification of five arrhythmias and 99.8% for the classification of myocardial infarction. The experiments show that the high-precision computer-assisted intelligent classification method is superior and can effectively improve the diagnostic efficiency of arrhythmia as well as myocardial infarction and other cardiac diseases.


Assuntos
Cardiopatias , Infarto do Miocárdio , Humanos , Eletrocardiografia , Infarto do Miocárdio/diagnóstico por imagem , Algoritmos , Fontes de Energia Elétrica
15.
Angew Chem Int Ed Engl ; 62(10): e202218349, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647293

RESUMO

Metal-free perovskites (MFPs) with flexible and degradable properties have been adopted in flexible X-ray detection. For now, figuring out the key factors between structure and device performance are critical to guide the design of MFPs. Herein, MPAZE-NH4 I3 ⋅ H2 O was first designed and synthesized with improved structural stability and device performance. Through theoretical calculations, the introducing methyl group benefits modulating tolerance factor, increases dipole moment and strengthens hydrogen bonds. Meanwhile, H2 O increases the hydrogen bond formation sites and synergistically realizes the band nature modulation, ionic migration inhibition and structural stiffness optimization. Spectra analysis also proves that the improved electron-phonon coupling and carrier recombination lifetime contribute to enhanced performance. Finally, a flexible and degradable X-ray detector was fabricated with the highest sensitivity of 740.8 µC Gyair -1 cm-2 and low detection limit (0.14 nGyair s-1 ).

16.
Angew Chem Int Ed Engl ; 62(23): e202301863, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022283

RESUMO

The development of conjugated polymers with high semiconducting performance and high reliability is of great significance for flexible electronics. Herein, we developed a new type of electron-accepting building block; i.e., non-symmetric half-fused B←N coordinated diketopyrrolopyrrole (DPP) (HBNDPP), for amorphous conjugated polymers toward flexible electronics. The rigid B←N fusion part of HBNDPP endows the resulting polymers with decent electron transport, while its non-symmetric structure causes the polymer to exhibit multiple conformation isomers with flat torsional potential energies. Thus, it gets packed in an amorphous manner in solid state, ensuring good resistance to bending strain. Combined with hardness and softness, the flexible organic field-effect transistor devices exhibit n-type charge properties with decent mobility, good bending resistance, and good ambient stability. The preliminary study makes this building block a potential candidate for future design of conjugated materials for flexible electronic devices.

17.
J Am Chem Soc ; 144(7): 3146-3153, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35038385

RESUMO

An accurate single-molecule kinetic isotope effect (sm-KIE) was applied to circumvent the inherent limitation of conventional ensemble KIE by using graphene-molecule-graphene single-molecule junctions. In situ monitoring of the single-molecule reaction trajectories in real time with high temporal resolution has the capability to characterize the deeper information brought by KIE. The C-O bond cleavage and the C-C bond formation of the transition state (TS) were observed in the Claisen rearrangement through the secondary kinetic isotope effect, demonstrating the high detection sensitivity and accuracy of this method. More interestingly, this sm-KIE can be used to determine TS structures under different electric fields, revealing the multidimensional regulation of the TS. The detection and manipulation of the TS provide a broad perspective to understand and optimize chemical reactions and biomimetic progress.

18.
Chemistry ; 28(20): e202200306, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35226759

RESUMO

Exploration of π-conjugated polycycles, particularly those have π-frameworks spread over the three-dimensional space, is essential in materials science and synthetic chemistry as these chemical entities possess featured optoelectronic properties and supramolecular assembly. Herein, the bowl-shaped trichalcogenasumanenes are fused onto three branches of triptycene through pyrazine units, affording waterwheel-like three-dimensional polycycles 4 a/4 b. Because the three branches on 4 a/4 b are chemically equal, the molecular orbitals of 4 a/4 b show degenerate feature that results in the strong UV-Vis absorbance at steady state. 4 a/4 b exhibit photo-induced charge-separation and subsequent charge-redistribution at transient state, leading to excited state absorption in NIR-II window (1165-1400 nm). 4 a/4 b are excellent fullerene receptors, and they form 1 : 1 host-guest complexes with C60 /C70 as proved by spectroscopic titrations and single crystal structure analysis. Moreover, 4 a/4 b show much stronger affinity toward C70 than C60 . Consequently, 4 a/4 b are able to separate C60 and C70 from their mixture, giving the purity of C60 up to 99.5 %.

19.
Angew Chem Int Ed Engl ; 61(22): e202117504, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239988

RESUMO

Buckybowls have unique properties that can be tailored by embedding main-group elements into their π-scaffolds. Herein, a synthetic approach is developed for producing monoazadichalcogenasumanenes (4 a/4 b, 6 a/6 b, 7 a/7 b) derived from sumanene by replacing its three benzylic carbons with one nitrogen and two chalcogen atoms (S for 4 a/4 b, Se for 6 a/6 b, Te for 7 a/7 b). Monoazadichalcogenasumanenes are deeper π-bowls than trichalcogensumanenes as the C-N bond is much shorter than C-X (X=S, Se, Te). The bowl-depth of 4 b (0.95 Å) is greater than that of corannulene (0.85 Å). The nitrogen atom donates electron density to the entire π-system that makes monoazadichalcogenasumanenes electron-rich. They undergo ring reconstruction of chalcogenophene ring via transferring a chalcogen atom from one molecule to another under acidic conditions. The nitrogen and chalcogen atoms play crucial role on this reaction.

20.
Angew Chem Int Ed Engl ; 61(44): e202210924, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098932

RESUMO

Graphene nanoribbons (GNRs) are promising in organic optoelectronic materials, and their properties largely depend on the size, edge, and conformation. Herein, the fully armchair-edged GNRs (AGNRs) with lengths up to 2.65 nm by using a Cu-catalyzed deoxygenative coupling as a key step. The resulting AGNRs (2HBT, 3HBT, and 4HBT) possess highly twisted π-scaffolds, and the torsion angles between the adjacent triphenylene moieties are larger than 32°, as proved by crystallographic analyses. Theoretical and spectroscopic studies show that the butoxy groups endow AGNRs with electron-rich features, the extension of the π-system from 2HBT to 4HBT reinforces S0 →S1 excitation, and the distortion of the π-scaffold enhances the fluorescence quantum yield (ΦF ). In particular, 4HBT has the lowest oxidation potential (Eox 1 =0.55 V vs. SCE) and displays red fluorescence with a ΦF value of 81 %.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA