Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Inst Med Trop Sao Paulo ; 61: e46, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531624

RESUMO

The Asian tiger mosquito ( Aedes albopictus, Diptera: Culicidae) has spread rapidly in the last 30 years from its native region in Southeast Asia. In Argentina, studies on its potential distribution suggest that this species could be found in temperate zones of the province of Buenos Aires. However, since its initial detection in 1998 Ae. albopictus is bounded to the subtropical province of Misiones. To evaluate the presence and abundance of Ae. albopictus in the Northeast of Argentina, we preliminarily evaluated the presence of this vector by analyzing its presence in tires of 20 cities belonging to the province of Misiones and four cities in Northern Corrientes, and then performed an evaluation of the vector in the towns where the vector was detected. Aedes albopictus was present only in two cities of Misiones: Eldorado and Colonia Aurora. Aedes aegypti and Ae . albopictus accounted for 86% of the individuals collected in the domiciles of both towns. In Colonia Aurora both species were in similar abundances suggesting a co-dominance. The present study extends the austral distribution of Ae. albopictus in Argentina to the city of Colonia Aurora where the highest abundance recorded in Argentina was detected. Nevertheless, the reasons of its bounded distribution in the region are not known.


Assuntos
Aedes/classificação , Mosquitos Vetores/classificação , Animais , Argentina , Dengue/transmissão , Densidade Demográfica
2.
PeerJ ; 6: e5196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038860

RESUMO

BACKGROUND: Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. METHODS: Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). RESULTS: Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. DISCUSSION: Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA