Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299146

RESUMO

Evaluating maize genotypes under different conditions is important for identifying which genotypes combine stability with high yield potential. The aim of this study was to assess stability and the effect of the genotype-environment interaction (GEI) on the grain yield traits of four maize genotypes grown in field trials; one control trial without nitrogen, and three applying different levels of nitrogen (0, 70, 140, and 210 kg ha-1, respectively). Across two growing seasons, both the phenotypic variability and GEI for yield traits over four maize genotypes (P0725, P9889, P9757 and P9074) grown in four different fertilization treatments were studied. The additive main effects and multiplicative interaction (AMMI) models were used to estimate the GEI. The results revealed that genotype and environmental effects, such as the GEI effect, significantly influenced yield, as well as revealing that maize genotypes responded differently to different conditions and fertilization measures. An analysis of the GEI using the IPCA (interaction principal components) analysis method showed the statistical significance of the first source of variation, IPCA1. As the main component, IPCA1 explained 74.6% of GEI variation in maize yield. Genotype G3, with a mean grain yield of 10.6 t ha-1, was found to be the most stable and adaptable to all environments in both seasons, while genotype G1 was found to be unstable, following its specific adaptation to the environments.

2.
Toxins (Basel) ; 14(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36548784

RESUMO

Aflatoxin, a naturally occurring toxin produced by the fungus Aspergillus flavus, is the most economically important mycotoxin in the world, with harmful effects on human and animal health. Preventive measures such as irrigation and planting dates can minimize aflatoxin contamination most years. However, no control strategy is completely effective when environmental conditions are extremely favorable for growth of the fungus. The most effective control method is growing maize hybrids with genetic resistance to aflatoxin contamination. The aim of this research was to evaluate the sensitivity of different maize hybrids to A. flavus infection and aflatoxin accumulation. Twenty commercial maize hybrids were evaluated in field trials with artificial inoculations using the colonized toothpicks method. The mycotoxin production potential of A. flavus isolates was confirmed by cluster amplification patterns (CAPs) analysis. The results of this research indicated the existence of significant differences in maize hybrids susceptibility to Aspergillus ear rot and aflatoxin B1 accumulation. No hybrid included in this research showed complete resistance in all conditions, but some hybrids showed partial resistance. Different hybrids also responded differently depending on the sowing date. This research showed that infection intensity is not always consistent with aflatoxin levels, and therefore visual evaluation is not enough to assess maize safety.


Assuntos
Aflatoxinas , Animais , Humanos , Aflatoxinas/análise , Zea mays/genética , Zea mays/microbiologia , Sérvia , Aspergillus/genética , Aspergillus flavus/genética
3.
Plants (Basel) ; 10(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806870

RESUMO

The less productive soils present one of the major problems in wheat production. Because of unfavorable conditions, halomorphic soils could be intensively utilized using ameliorative measures and by selecting suitable stress tolerant wheat genotypes. This study examined the responses of ten winter wheat cultivars on stressful conditions of halomorphic soil, solonetz type in Banat, Serbia. The wheat genotypes were grown in field trails of control and treatments with two soil amelioration levels using phosphor gypsum, in amounts of 25 and 50 tha-1. Across two vegetation seasons, phenotypic variability and genotype by environment interaction (GEI) for yield traits of wheat were studied. The additive main effects and multiplicative interaction (AMMI) models were used to study the GEI. AMMI analyses revealed significant genotype and environmental effects, as well as GEI effect. Analysis of GEI using the IPCA (Interaction Principal Components) analysis showed a statistical significance of the first two main components, IPCA1 and IPCA2 for yield, which jointly explained 70% of GEI variation. First source of variation IPCA1 explained 41.15% of the GEI for the grain weight per plant and 78.54% for the harvest index. The results revealed that wheat genotypes responded differently to stressful conditions and ameliorative measures.

4.
Plants (Basel) ; 9(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352667

RESUMO

Different seed priming treatments are widely used in order to improve the nutritional status of wheat, as well as to improve its grain yield and yield- related traits. The present study aimed to evaluate the impact of seed priming with zinc oxide nanoparticles (ZnO NPs) on the yield related traits, such as, field emergence, plant height, spike length and grain yield per plant of four winter wheat genotypes (Triticum aestivum L.) during two vegetation seasons of 2018/2019 and 2019/2020. The seeds of each wheat genotypes were primed with different concentrations of ZnO NPs (0 mg L-1, 10 mg L-1, 100 mg L-1 and 1000 mg L-1) for 48 h in a dark box by continuous aeration and were sown in soil pots with 60-70% moisture content until full maturity. The additive main effects and multiplicative interaction (AMMI) models were used to study the genotype environment effects. The results indicated that the plants response to ZnO nanoparticles significantly increased all of the observed traits of the wheat, while its maximum rates reduced the traits of the wheat. The AMMI analysis revealed the very complex nature of the variation observed in the trial and showed the significant effect of the G×E interaction, in which the first main component was significant for all components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA