Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425781

RESUMO

Summary: High-throughput sequencing (HTS) offers a modern, fast, and explorative solution to unveil the full potential of display techniques, like antibody phage display, in molecular biology. However, a significant challenge lies in the processing and analysis of such data. Furthermore, there is a notable absence of open-access user-friendly software tools that can be utilized by scientists lacking programming expertise. Here, we present ExpoSeq as an easy-to-use tool to explore, process, and visualize HTS data from antibody discovery campaigns like an expert while only requiring a beginner's knowledge. Availability and implementation: The pipeline is distributed via GitHub and PyPI, and it can either be installed as a package with pip or the user can choose to clone the repository.

2.
Nat Commun ; 15(1): 173, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228619

RESUMO

Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.


Assuntos
Bothrops , Neurotoxinas , Camundongos , Animais , Humanos , Neurotoxinas/toxicidade , Bothrops asper , Anticorpos Facilitadores , Anticorpos Monoclonais/toxicidade
3.
Nat Commun ; 15(1): 4310, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773068

RESUMO

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Assuntos
Anticorpos Neutralizantes , Cobras Corais , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Cobras Corais/imunologia , Modelos Animais de Doenças , Antivenenos/imunologia , Venenos Elapídicos/imunologia , Feminino , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/terapia , Epitopos/imunologia , Camundongos Endogâmicos BALB C , Técnicas de Visualização da Superfície Celular
4.
Methods Mol Biol ; 2702: 419-431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679633

RESUMO

An important, and rapidly growing class of drugs are antibodies which can be discovered through phage display technology. In this technique, antibodies are typically first enriched through consecutive rounds of selection on a target antigen with amplification in bacteria between each selection round. Thereafter, a subset of random individual clones is analyzed for binding in a screening procedure. This results in discovery of the most abundant antibodies in the pool. However, there are multiple factors affecting the enrichment of antibodies during the selection resulting in a very complex output pool of antibodies. A few antibodies are present in many copies and others only in a few copies, where the most abundant antibodies are not necessarily the functionally best ones. In order to utilize the full potential of the output from a phage display selection, and enable discovery of low abundant, potentially functionally important clones, deep mining technologies are needed. In this chapter, two methods for deep mining of an antibody pool are described, protein depletion and antibody blocking. The methods can be applied both when the target is a single antigen and on complex antigen mixtures such as whole cells and tissues.


Assuntos
Anticorpos , Bacteriófagos , Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular , Células Clonais , Tecnologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38116472

RESUMO

Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.

6.
Cell Rep Methods ; 3(5): 100475, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323567

RESUMO

Phenotypic drug discovery (PDD) enables the target-agnostic generation of therapeutic drugs with novel mechanisms of action. However, realizing its full potential for biologics discovery requires new technologies to produce antibodies to all, a priori unknown, disease-associated biomolecules. We present a methodology that helps achieve this by integrating computational modeling, differential antibody display selection, and massive parallel sequencing. The method uses the law of mass action-based computational modeling to optimize antibody display selection and, by matching computationally modeled and experimentally selected sequence enrichment profiles, predict which antibody sequences encode specificity for disease-associated biomolecules. Applied to a phage display antibody library and cell-based antibody selection, ∼105 antibody sequences encoding specificity for tumor cell surface receptors expressed at 103-106 receptors/cell were discovered. We anticipate that this approach will be broadly applicable to molecular libraries coupling genotype to phenotype and to the screening of complex antigen populations for identification of antibodies to unknown disease-associated targets.


Assuntos
Neoplasias , Biblioteca de Peptídeos , Humanos , Antígenos , Anticorpos , Técnicas de Visualização da Superfície Celular
7.
Front Pharmacol ; 14: 1249336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693897

RESUMO

Ion channels play a crucial role in diverse physiological processes, including neurotransmission and muscle contraction. Venomous creatures exploit the vital function of ion channels by producing toxins in their venoms that specifically target these ion channels to facilitate prey capture upon a bite or a sting. Envenoming can therefore lead to ion channel dysregulation, which for humans can result in severe medical complications that often necessitate interventions such as antivenom administration. Conversely, the discovery of highly potent and selective venom toxins with the capability of distinguishing between different isoforms and subtypes of ion channels has led to the development of beneficial therapeutics that are now in the clinic. This review encompasses the historical evolution of electrophysiology methodologies, highlighting their contributions to venom and antivenom research, including venom-based drug discovery and evaluation of antivenom efficacy. By discussing the applications and advancements in patch-clamp techniques, this review underscores the profound impact of electrophysiology in unravelling the intricate interplay between ion channels and venom toxins, ultimately leading to the development of drugs for envenoming and ion channel-related pathologies.

8.
Toxicon ; 232: 107225, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442299

RESUMO

Current snakebite antivenoms are based on polyclonal animal-derived antibodies, which can neutralize snake venom toxins in envenomed victims, but which are also associated with adverse reactions. Therefore, several efforts within antivenom research aim to explore the utility of recombinant monoclonal antibodies, such as human immunoglobulin G (IgG) antibodies, which are routinely used in the clinic for other indications. In this study, the feasibility of using tobacco plants as bioreactors for expressing full-length human monoclonal IgG antibodies against snake toxins was investigated. We show that the plant-produced antibodies perform similarly to their mammalian cell-expressed equivalents in terms of in vitro antigen binding. Complete neutralization was achieved by both the plant and mammalian cell-produced anti-α-cobratoxin antibody. The feasibility of using plant-based expression systems may potentially make it easier for laboratories in resource-poor settings to work with human monoclonal IgG antibodies.


Assuntos
Nicotiana , Mordeduras de Serpentes , Animais , Humanos , Venenos de Serpentes , Antivenenos , Anticorpos Monoclonais , Imunoglobulina G , Mamíferos
9.
Sci Rep ; 13(1): 10181, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349546

RESUMO

Antibodies with cross-reactive binding and broad toxin-neutralizing capabilities are advantageous for treating indications such as infectious diseases and animal envenomings. Such antibodies have been successfully selected against closely related antigens using phage display technology. However, the mechanisms driving antibody cross-reactivity typically remain to be elucidated. Therefore, we sought to explore how a previously reported phage display-based cross-panning strategy drives the selection of cross-reactive antibodies using seven different snake toxins belonging to three protein (sub-)families: phospholipases A2, long-chain α-neurotoxins, and short-chain α-neurotoxins. We showcase how cross-panning can increase the chances of discovering cross-reactive single-chain variable fragments (scFvs) from phage display campaigns. Further, we find that the feasibility of discovering cross-reactive antibodies using cross-panning cannot easily be predicted by analyzing the sequence, structural, or surface similarity of the antigens alone. However, when antigens share the (exact) same functions, this seems to increase the chances of selecting cross-reactive antibodies, which may possibly be due to the existence of structurally similar motifs on the antigens.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Animais , Biblioteca de Peptídeos , Neurotoxinas , Antígenos , Bacteriófagos/genética , Venenos de Serpentes
10.
Toxicon ; 234: 107307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783315

RESUMO

Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.


Assuntos
Mordeduras de Serpentes , Animais , Humanos , Peçonhas , Anticorpos Monoclonais , Antivenenos/farmacologia , Serpentes , Fosfolipases A2 , Venenos de Serpentes
11.
MAbs ; 15(1): 2171248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823021

RESUMO

Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Descoberta de Drogas/métodos , Anticorpos Monoclonais
12.
Nat Commun ; 14(1): 682, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755049

RESUMO

Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.


Assuntos
Venenos Elapídicos , Neurotoxinas , Humanos , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Elapidae , Antivenenos , Anticorpos Monoclonais
13.
Protein Sci ; 32(12): e4821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897425

RESUMO

Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.


Assuntos
Bacteriófagos , Histidina , Histidina/metabolismo , Antígenos/metabolismo , Imunoglobulina G/genética , Concentração de Íons de Hidrogênio , Bacteriófagos/metabolismo , Biblioteca de Peptídeos
14.
Drug Discov Today ; 27(8): 2151-2169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35550436

RESUMO

Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigens.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos , Bacteriófagos/genética , Epitopos , Tecnologia
15.
Gigascience ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36509548

RESUMO

Venomous snakes are important parts of the ecosystem, and their behavior and evolution have been shaped by their surrounding environments over the eons. This is reflected in their venoms, which are typically highly adapted for their biological niche, including their diet and defense mechanisms for deterring predators. Sub-Saharan Africa is rich in venomous snake species, of which many are dangerous to humans due to the high toxicity of their venoms and their ability to effectively deliver large amounts of venom into their victims via their bite. In this study, the venoms of 26 of sub-Saharan Africa's medically most relevant elapid and viper species were subjected to parallelized toxicovenomics analysis. The analysis included venom proteomics and in vitro functional characterization of whole venom toxicities, enabling a robust comparison of venom profiles between species. The data presented here corroborate previous studies and provide biochemical details for the clinical manifestations observed in envenomings by the 26 snake species. Moreover, two new venom proteomes (Naja anchietae and Echis leucogaster) are presented here for the first time. Combined, the presented data can help shine light on snake venom evolutionary trends and possibly be used to further improve or develop novel antivenoms.


Assuntos
Elapidae , Proteômica , Animais , Humanos , Ecossistema , Antivenenos/química , África Subsaariana
16.
Sci Rep ; 10(1): 1546, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005942

RESUMO

Bispecific antibodies come in many different formats, including the particularly interesting two-in-one antibodies, where one conventional IgG binds two different antigens. The IgG format allows these antibodies to mediate Fc-related functionality, and their wild-type structure ensures low immunogenicity and enables standard methods to be used for development. It is however difficult, time-consuming and costly to generate two-in-one antibodies. Herein we demonstrate a new approach to create a similar type of antibody by combining two different variable heavy (VH) domains in each Fab arm of an IgG, a tetra-VH IgG format. The VHs are used as building blocks, where one VH is placed at its usual position, and the second VH replaces the variable light (VL) domain in a conventional IgG. VH domains, binding several different types of antigens, were discovered and could be rearranged in any combination, offering a convenient "plug and play" format. The tetra-VH IgGs were found to be functionally tetravalent, binding two antigens on each arm of the IgG molecule simultaneously. This offers a new strategy to also create monospecific, tetravalent IgGs that, depending on antigen architecture and mode-of-action, may have enhanced efficacy compared to traditional bivalent antibodies.


Assuntos
Anticorpos Biespecíficos/metabolismo , Linfócitos B/imunologia , Imunoglobulina G/metabolismo , Animais , Anticorpos Biespecíficos/genética , Sítios de Ligação/genética , Antígenos CD40/imunologia , Proliferação de Células , Células Cultivadas , Humanos , Imunoglobulina G/genética , Ligante OX40/imunologia , Ligação Proteica , Engenharia de Proteínas , Transdução de Sinais , Anticorpos de Cadeia Única/genética
17.
JCI Insight ; 5(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870822

RESUMO

Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor.


Assuntos
Antígenos CD/genética , Epitopos/imunologia , Proteínas de Checkpoint Imunológico/genética , Tolerância Imunológica , Linfoma/genética , Monócitos/imunologia , Receptores Imunológicos/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Antígenos CD/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Mapeamento de Epitopos , Epitopos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Proteínas de Checkpoint Imunológico/imunologia , Linfoma/imunologia , Linfoma/mortalidade , Linfoma/patologia , Camundongos , Monócitos/citologia , Biblioteca de Peptídeos , Cultura Primária de Células , Receptores Imunológicos/agonistas , Receptores Imunológicos/imunologia , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Transplante Homólogo
18.
Front Pharmacol ; 10: 847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417405

RESUMO

Phage display technology is a common approach for discovery of therapeutic antibodies. Drug candidates are typically isolated in two steps: First, a pool of antibodies is enriched through consecutive rounds of selection on a target antigen, and then individual clones are characterized in a screening procedure. When whole cells are used as targets, as in phenotypic discovery, the output phage pool typically contains thousands of antibodies, binding, in theory, hundreds of different cell surface receptors. Clonal expansion throughout the phage display enrichment process is affected by multiple factors resulting in extremely complex output phage pools where a few antibodies are highly abundant and the majority is very rare. This is a huge challenge in the screening where only a fraction of the antibodies can be tested using a conventional binding analysis, identifying mainly the most abundant clones typically binding only one or a few targets. As the expected number of antibodies and specificities in the pool is much higher, complementing methods, to reach deeper into the pool, are required, called deep mining methods. In this study, four deep mining methods were evaluated: 1) isolation of rare sub-pools of specific antibodies through selection on recombinant proteins predicted to be expressed on the target cells, 2) isolation of a sub-pool enriched for antibodies of unknown specificities through depletion of the primary phage pool on recombinant proteins corresponding to receptors known to generate many binders, 3) isolation of a sub-pool enriched for antibodies through selection on cells blocked with antibodies dominating the primary phage pool, and 4) next-generation sequencing-based analysis of isolated antibody pools followed by antibody gene synthesis and production of rare but enriched clones. We demonstrate that antibodies binding new targets and epitopes, not discovered through screening alone, can be discovered using described deep mining methods. Overall, we demonstrate the complexity of phage pools generated through selection on cells and show that a combination of conventional screening and deep mining methods are needed to fully utilize such pools. Deep mining will be important in future phenotypic antibody drug discovery efforts to increase the diversity of identified antibodies and targets.

19.
Protein Eng Des Sel ; 21(8): 485-93, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18480091

RESUMO

Recently, we constructed a focused antibody library tailored to interact with haptens. High functionality of this library was demonstrated, as specific binders could be retrieved to a range of different haptens. In the current study we have developed a mutagenesis and selection strategy in order to further fine-tune the hapten binding properties of these antibody fragments. Testosterone was chosen as model antigen for the investigation. A population, rather than a single clone, originating from this focused library and enriched for testosterone binders, was subjected to random mutagenesis and different phage display selection strategies of various stringencies. These included consecutively lowering the antigen concentration and having, or not having, soluble hapten present during the phage capture and elution steps. The different selection procedures resulted in a considerable increase in apparent affinities for several of the selected populations, from which the highest affinity antibody isolated had a K(D) of 2 nM, corresponding to an approximately 200-fold affinity improvement compared with the best clone of the starting population. Importantly, the polyclonal nature of the starting material allowed for the identification of novel unrelated variants that differed in fine-specificity, demonstrating that this approach is valuable for exploring different parts of structure space.


Assuntos
Afinidade de Anticorpos , Evolução Molecular Direcionada , Haptenos/imunologia , Fragmentos de Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/química , Biblioteca de Peptídeos , Testosterona/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA