Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mem Inst Oswaldo Cruz ; 113(12): e180323, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30540021

RESUMO

BACKGROUND The transmission routes for American cutaneous leishmaniasis (ACL) are in flux, so studies examining its transmission in humans, mammalian hosts, and sand fly vectors are urgently needed. OBJECTIVES The aim of this work was understand the epidemiological cycles of Leishmania spp., which causes ACL in the Andean Region of Venezuela, by identifying the Leishmania and the sand fly species involved in human and dog infections. METHODS Thirty-one biopsies from patients in Mérida and Táchira states with suspected ACL were studied by both parasitological tests (cultures and hamster inoculation) and a molecular test [Internal transcribed spacer 1 (ITS1) nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)]. We also conducted a survey to detect Leishmania infection in dogs (Immunifluorescence antibody test and ITS1 nested PCR-RFLP) and sand flies (ITS1 nested PCR-RFLP) from El Carrizal, a highly endemic focus of ACL in Venezuela. FINDINGS Three different Leishmania species were identified in the clinical samples from humans (Leishmania braziliensis, L. guyanensis, and L. mexicana) and dogs (L. guyanensis and L. mexicana). The predominant sand fly species found were those from the Verrucarum group (infected with L. mexicana) and Lutzomyia migonei (infected with L. guyanensis and L. mexicana). MAIN CONCLUSIONS We show that Lu. migonei may be the putative vector in two ACL epidemiological cycles, involving L. guyanensis and L. mexicana. We also report for the first time the presence of L. guyanensis in domestic animals.


Assuntos
DNA Espaçador Ribossômico/genética , Insetos Vetores/parasitologia , Leishmania braziliensis/genética , Leishmania guyanensis/genética , Leishmania mexicana/genética , Leishmaniose Cutânea/parasitologia , Psychodidae/parasitologia , Animais , Cães , Feminino , Humanos , Leishmania braziliensis/isolamento & purificação , Leishmania guyanensis/isolamento & purificação , Leishmania mexicana/isolamento & purificação , Leishmaniose Cutânea/transmissão , Tipagem Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Venezuela
2.
Parasitol Res ; 115(3): 1287-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26755361

RESUMO

Molecular methods are increasingly used for both species identification of sandflies and assessment of their population structure. In general, they are based on DNA sequence analysis of targets previously amplified by PCR. However, this approach requires access to DNA sequence facilities, and in some circumstances, it is time-consuming. Though DNA sequencing provides the most reliable information, other downstream PCR applications are explored to assist in species identification. Thus, it has been recently proposed that the amplification of a DNA region encompassing partially both the cytochrome-B (cytb) and the NADH dehydrogenase 1 (nd1) genes followed by RFLP analysis with the restriction enzyme Ase I allows the rapid identification of the most prevalent species of phlebotomine sandflies in the Mediterranean region. In order to confirm the suitability of this method, we collected, processed, and molecularly analyzed a total of 155 sandflies belonging to four species including Phlebotomus ariasi, P. papatasi, P. perniciosus, and Sergentomyia minuta from different regions in Spain. This data set was completed with DNA sequences available at the GenBank for species prevalent in the Mediterranean basin and the Middle East. Additionally, DNA sequences from 13 different phlebotomine species (P. ariasi, P. balcanicus, P. caucasicus, P. chabaudi, P. chadlii, P. longicuspis, P. neglectus, P. papatasi, P. perfiliewi, P. perniciosus, P. riouxi, P. sergenti, and S. minuta), from 19 countries, were added to the data set. Overall, our molecular data revealed that this PCR-RFLP method does not provide a unique and specific profile for each phlebotomine species tested. Intraspecific variability and similar RFLP patterns were frequently observed among the species tested. Our data suggest that this method may not be applicable throughout the Mediterranean region as previously proposed. Other molecular approaches like DNA barcoding or phylogenetic analyses would allow a more precise molecular species identification.


Assuntos
Citocromos b/genética , Complexo I de Transporte de Elétrons/genética , Psychodidae/classificação , Animais , Sequência de Bases , Clima , DNA/química , DNA/isolamento & purificação , Bases de Dados de Ácidos Nucleicos , Feminino , Masculino , Região do Mediterrâneo , Oriente Médio , Phlebotomus/classificação , Phlebotomus/genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Psychodidae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Espanha
3.
mBio ; 9(6)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401775

RESUMO

Protozoan parasites of the genus Leishmania adapt to environmental change through chromosome and gene copy number variations. Only little is known about external or intrinsic factors that govern Leishmania genomic adaptation. Here, by conducting longitudinal genome analyses of 10 new Leishmania clinical isolates, we uncovered important differences in gene copy number among genetically highly related strains and revealed gain and loss of gene copies as potential drivers of long-term environmental adaptation in the field. In contrast, chromosome rather than gene amplification was associated with short-term environmental adaptation to in vitro culture. Karyotypic solutions were highly reproducible but unique for a given strain, suggesting that chromosome amplification is under positive selection and dependent on species- and strain-specific intrinsic factors. We revealed a progressive increase in read depth towards the chromosome ends for various Leishmania isolates, which may represent a nonclassical mechanism of telomere maintenance that can preserve integrity of chromosome ends during selection for fast in vitro growth. Together our data draw a complex picture of Leishmania genomic adaptation in the field and in culture, which is driven by a combination of intrinsic genetic factors that generate strain-specific phenotypic variations, which are under environmental selection and allow for fitness gain.IMPORTANCE Protozoan parasites of the genus Leishmania cause severe human and veterinary diseases worldwide, termed leishmaniases. A hallmark of Leishmania biology is its capacity to adapt to a variety of unpredictable fluctuations inside its human host, notably pharmacological interventions, thus, causing drug resistance. Here we investigated mechanisms of environmental adaptation using a comparative genomics approach by sequencing 10 new clinical isolates of the L. donovani, L. major, and L. tropica complexes that were sampled across eight distinct geographical regions. Our data provide new evidence that parasites adapt to environmental change in the field and in culture through a combination of chromosome and gene amplification that likely causes phenotypic variation and drives parasite fitness gains in response to environmental constraints. This novel form of gene expression regulation through genomic change compensates for the absence of classical transcriptional control in these early-branching eukaryotes and opens new venues for biomarker discovery.


Assuntos
Adaptação Fisiológica/genética , Dosagem de Genes , Genoma de Protozoário , Cariótipo , Leishmania donovani/genética , Telômero/genética , Animais , Cromossomos/genética , Cricetinae/parasitologia , Variações do Número de Cópias de DNA , Cães/parasitologia , Evolução Molecular , Amplificação de Genes , Regulação da Expressão Gênica , Genes de Protozoários , Aptidão Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/parasitologia
4.
Mem. Inst. Oswaldo Cruz ; 113(12): e180323, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-976234

RESUMO

BACKGROUND The transmission routes for American cutaneous leishmaniasis (ACL) are in flux, so studies examining its transmission in humans, mammalian hosts, and sand fly vectors are urgently needed. OBJECTIVES The aim of this work was understand the epidemiological cycles of Leishmania spp., which causes ACL in the Andean Region of Venezuela, by identifying the Leishmania and the sand fly species involved in human and dog infections. METHODS Thirty-one biopsies from patients in Mérida and Táchira states with suspected ACL were studied by both parasitological tests (cultures and hamster inoculation) and a molecular test [Internal transcribed spacer 1 (ITS1) nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)]. We also conducted a survey to detect Leishmania infection in dogs (Immunifluorescence antibody test and ITS1 nested PCR-RFLP) and sand flies (ITS1 nested PCR-RFLP) from El Carrizal, a highly endemic focus of ACL in Venezuela. FINDINGS Three different Leishmania species were identified in the clinical samples from humans (Leishmania braziliensis, L. guyanensis, and L. mexicana) and dogs (L. guyanensis and L. mexicana). The predominant sand fly species found were those from the Verrucarum group (infected with L. mexicana) and Lutzomyia migonei (infected with L. guyanensis and L. mexicana). MAIN CONCLUSIONS We show that Lu. migonei may be the putative vector in two ACL epidemiological cycles, involving L. guyanensis and L. mexicana. We also report for the first time the presence of L. guyanensis in domestic animals.


Assuntos
Humanos , Leishmania , Leishmania/parasitologia , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA