Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(20): 11239-11257, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811881

RESUMO

BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.


Assuntos
Processamento Alternativo , Precursores de RNA , Apoptose , Isoformas de Proteínas/genética , Precursores de RNA/genética , Sítios de Splice de RNA , Humanos
2.
Nucleic Acids Res ; 50(20): 11799-11819, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350639

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Infecções Tumorais por Vírus , Humanos , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Sistema Imunitário/metabolismo , Vírus Oncogênicos/genética , Vírus Oncogênicos/metabolismo , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , RNA Mensageiro/metabolismo , Infecções Tumorais por Vírus/tratamento farmacológico , Infecções Tumorais por Vírus/metabolismo
3.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621276

RESUMO

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Assuntos
Encefalopatias , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras , Encefalopatias/metabolismo , DNA Complementar/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Proteínas/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743210

RESUMO

CBS encodes a pyridoxal 5'-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. However, thus far, attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity. We consequently developed an original, yeast-based screening method that identified three FDA-approved drugs of the 8-hydroxyquinoline family: clioquinol, chloroxine and nitroxoline. These molecules reduce CBS enzymatic activity in different cellular models, proving that the molecular mechanisms involved in yeast phenotypic rescue are conserved in mammalian cells. A combination of genetic and chemical biology approaches also revealed the importance of copper and zinc intracellular levels in the regulation of CBS enzymatic activity-copper promoting CBS activity and zinc inhibiting its activity. Taken together, these results indicate that our effective screening approach identified three new potent CBS inhibitors and provides new findings for the regulation of CBS activity, which is crucial to develop new therapies for CBS-related human disorders.


Assuntos
Cistationina beta-Sintase , Saccharomyces cerevisiae , Animais , Cobre , Cistationina beta-Sintase/genética , Humanos , Mamíferos , Oxiquinolina/farmacologia , Fosfato de Piridoxal , Zinco
5.
Hum Mol Genet ; 28(9): 1561-1577, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649339

RESUMO

Identifying dosage-sensitive genes is a key to understand the mechanisms underlying intellectual disability in Down syndrome (DS). The Dp(17Abcg1-Cbs)1Yah DS mouse model (Dp1Yah) shows cognitive phenotypes that need to be investigated to identify the main genetic driver. Here, we report that three copies of the cystathionine-beta-synthase gene (Cbs) in the Dp1Yah mice are necessary to observe a deficit in the novel object recognition (NOR) paradigm. Moreover, the overexpression of Cbs alone is sufficient to induce deficits in the NOR test. Accordingly, overexpressing human CBS specifically in Camk2a-expressing neurons leads to impaired objects discrimination. Altogether, this shows that Cbs overdosage is involved in DS learning and memory phenotypes. To go further, we identified compounds that interfere with the phenotypical consequence of CBS overdosage in yeast. Pharmacological intervention in Tg(CBS) mice with one selected compound restored memory in the NOR test. In addition, using a genetic approach, we demonstrated an epistatic interaction between Cbs and Dyrk1a, another human chromosome 21-located gene (which encodes the dual-specificity tyrosine phosphorylation-regulated kinase 1a) and an already known target for DS therapeutic intervention. Further analysis using proteomic approaches highlighted several molecular pathways, including synaptic transmission, cell projection morphogenesis and actin cytoskeleton, that are affected by DYRK1A and CBS overexpression. Overall, we demonstrated that CBS overdosage underpins the DS-related recognition memory deficit and that both CBS and DYRK1A interact to control accurate memory processes in DS. In addition, our study establishes CBS as an intervention point for treating intellectual deficiencies linked to DS.


Assuntos
Cistationina beta-Sintase/genética , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Epistasia Genética , Dosagem de Genes , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Comportamento Animal , Cognição , Modelos Animais de Doenças , Humanos , Locomoção , Memória , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteoma , Proteômica/métodos , Quinases Dyrk
6.
Hum Mol Genet ; 27(12): 2138-2153, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659809

RESUMO

The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.


Assuntos
Epilepsia/genética , Proteínas de Homeodomínio/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Contratura , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Deficiência Intelectual , Masculino , Camundongos , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Peptídeos/genética , Prosencéfalo/fisiopatologia , Paraplegia Espástica Hereditária , Transcriptoma/genética , Adulto Jovem
7.
Molecules ; 24(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766108

RESUMO

Since hyperactivity of the protein kinase DYRK1A is linked to several neurodegenerative disorders, DYRK1A inhibitors have been suggested as potential therapeutics for Down syndrome and Alzheimer's disease. Most published inhibitors to date suffer from low selectivity against related kinases or from unfavorable physicochemical properties. In order to identify DYRK1A inhibitors with improved properties, a series of new chemicals based on [b]-annulated halogenated indoles were designed, synthesized, and evaluated for biological activity. Analysis of crystal structures revealed a typical type-I binding mode of the new inhibitor 4-chlorocyclohepta[b]indol-10(5H)-one in DYRK1A, exploiting mainly shape complementarity for tight binding. Conversion of the DYRK1A inhibitor 8-chloro-1,2,3,9-tetrahydro-4H-carbazol-4-one into a corresponding Mannich base hydrochloride improved the aqueous solubility but abrogated kinase inhibitory activity.


Assuntos
Halogênios/química , Indóis/química , Indóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Solubilidade , Análise Espectral , Relação Estrutura-Atividade , Quinases Dyrk
8.
Proc Natl Acad Sci U S A ; 112(47): E6486-95, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26604306

RESUMO

Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.


Assuntos
Membranas Intracelulares/metabolismo , Fagossomos/metabolismo , Canais de Cátion TRPC/metabolismo , Ácidos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diglicerídeos/metabolismo , Exocitose/efeitos dos fármacos , Imunofluorescência , Humanos , Membranas Intracelulares/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Fagossomos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Purinas/química , Purinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Roscovitina , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Canal de Cátion TRPC6
9.
Molecules ; 23(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364148

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a potential drug target because of its role in the development of Down syndrome and Alzheimer's disease. The selective DYRK1A inhibitor 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid (KuFal194), a large, flat and lipophilic molecule, suffers from poor water solubility, limiting its use as chemical probe in cellular assays and animal models. Based on the structure of KuFal194, 7-chloro-1H-indole-3-carbonitrile was selected as fragment template for the development of smaller and less lipophilic DYRK1A inhibitors. By modification of this fragment, a series of indole-3-carbonitriles was designed and evaluated as potential DYRK1A ligands by molecular docking studies. Synthesis and in vitro assays on DYRK1A and related protein kinases identified novel double-digit nanomolar inhibitors with submicromolar activity in cell culture assays.


Assuntos
Desenho de Fármacos , Indóis/química , Nitrilas/química , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Nitrilas/síntese química , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Solubilidade , Quinases Dyrk
10.
Mar Drugs ; 15(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039762

RESUMO

A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton), physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) and potential pharmacological leads for the treatment of several diseases, including Alzheimer's disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets.


Assuntos
Alcaloides/farmacologia , Imidazóis/farmacologia , Poríferos/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Urocordados/química , Alcaloides/síntese química , Alcaloides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Aminas/síntese química , Aminas/farmacologia , Aminas/uso terapêutico , Animais , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Síndrome de Down/tratamento farmacológico , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/uso terapêutico , Fosforilação , Filogenia , Poríferos/genética , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Infecções por Protozoários/tratamento farmacológico , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Quinases Dyrk
11.
Bioorg Med Chem Lett ; 26(17): 4327-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27469128

RESUMO

The synthesis of new diversely substituted pyrido[3,4-g]quinazolines is described. The inhibitory potencies of prepared compounds toward a panel of five CMGC protein kinases (CDK5, CLK1, DYRK1A, CK1, GSK3), that are known to play a potential role in Alzheimer's disease, were evaluated. The best overall kinase inhibition profile was found for nitro compound 4 bearing an ethyl group at the 5-position.


Assuntos
Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/síntese química , Quinazolinas/farmacologia , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Nitrocompostos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/classificação , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Quinazolinas/química
12.
Bioorg Med Chem ; 24(16): 3790-800, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27349574

RESUMO

Trypanothione synthetase is an essential enzyme for kinetoplastid parasites which cause highly disabling and fatal diseases in humans and animals. Inspired by the observation that N(5)-substituted paullones inhibit the trypanothione synthetase from the related parasite Leishmania infantum, we designed and synthesized a series of new derivatives. Although none of the new compounds displayed strong inhibition of Trypanosoma brucei trypanothione synthetase, several of them caused a remarkable growth inhibition of cultivated Trypanosoma brucei bloodstream forms. The most potent congener 3a showed antitrypanosomal activity in double digit nanomolar concentrations and a selectivity index of three orders of magnitude versus murine macrophage cells.


Assuntos
Antiprotozoários/farmacologia , Benzazepinas/farmacologia , Indóis/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Amida Sintases/antagonistas & inibidores , Animais , Antiprotozoários/química , Benzazepinas/química , Humanos , Indóis/química , Análise Espectral/métodos , Trypanosoma brucei brucei/enzimologia
13.
Molecules ; 21(6)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-27322235

RESUMO

A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives (series 8, 10, 14 and 17) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)-one (3) has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer's disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Quinazolinonas/química , Doença de Alzheimer/enzimologia , Barbitúricos/química , Catálise , Cobre/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/síntese química , Quinazolinonas/uso terapêutico , Relação Estrutura-Atividade
14.
Molecules ; 21(5)2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27144552

RESUMO

A library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer's disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinazolinonas/síntese química , Tiazóis/síntese química , Animais , Humanos , Ligantes , Estrutura Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinonas/metabolismo , Quinazolinonas/uso terapêutico , Suínos , Tiazóis/metabolismo , Tiazóis/uso terapêutico
15.
Mar Drugs ; 13(5): 2617-28, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25927661

RESUMO

Seven new adociaquinone derivatives, xestoadociaquinones A (1a), B (1b), 14-carboxy-xestoquinol sulfate (2) and xestoadociaminals A-D (3a, 3c, 4a, 4c), together with seven known compounds (5-11) were isolated from an Indonesian marine sponge Xestospongia sp. Their structures were elucidated by extensive 1D and 2D NMR and mass spectrometric data. All the compounds were evaluated for their potential inhibitory activity against eight different protein kinases involved in cell proliferation, cancer, diabetes and neurodegenerative disorders as well as for their antioxidant and antibacterial activities.


Assuntos
Naftoquinonas/química , Poríferos/química , Xestospongia/química , Animais , Antibacterianos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Naftoquinonas/farmacologia , Proteínas Quinases/química
16.
J Nat Prod ; 77(5): 1117-22, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24798019

RESUMO

Two new acridone alkaloids, chlorospermines A and B (1 and 2), were isolated from the stem bark of Glycosmis chlorosperma, together with the known atalaphyllidine (3) and acrifoline (4), by means of bioguided isolation using an in vitro enzyme assay against DYRK1A. Acrifoline (4) and to a lesser extent chlorospermine B (2) and atalaphyllidine (3) showed significant inhibiting activity on DYRK1A with IC50's of 0.075, 5.7, and 2.2 µM, respectively. Their selectivity profile was evaluated against a panel of various kinases, and molecular docking calculations provided structural details for the interaction between these compounds and DYRK1A.


Assuntos
Acridonas/isolamento & purificação , Alcaloides/isolamento & purificação , Rutaceae/química , Acridonas/química , Alcaloides/química , Malásia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinases Dyrk
17.
Molecules ; 19(10): 15546-71, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268714

RESUMO

The convenient synthesis of a library of novel 6,6,5-tricyclic thiazolo[5,4-f] quinazolines (forty molecules) was achieved mainly under microwave irradiation. Dimroth rearrangement and 4,5-dichloro-1,2,3,-dithiazolium chloride (Appel salt) chemistry were associated for the synthesis of a novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (16) a versatile molecular platform for the synthesis of various bioactive derivatives. Kinase inhibition of the final compounds was evaluated on a panel of four Ser/Thr kinases (DYRK1A, CDK5, CK1 and GSK3) chosen for their strong implications in various regulation processes, especially Alzheimer's disease (AD). In view of the results of this preliminary screening, thiazolo[5,4-f]quinazoline scaffolds constitutes a promising source of inspiration for the synthesis of novel bioactive molecules. Among the compounds of this novel chemolibrary, 7i, 8i and 9i inhibited DYRK1A with IC50 values ranging in the double-digit nanomolar range (40, 47 and 50 nM, respectively).


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Quinazolinas/química , Técnicas de Química Sintética , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/síntese química , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Tiazóis , Quinases Dyrk
18.
Bioorg Med Chem Lett ; 23(24): 6784-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24176400

RESUMO

The efficient synthesis of 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues is described. 3,5-Dibromopyridine was converted into 3-amino-6-bromofuro[3,2-b]pyridine-2-carbonitrile intermediate which was formylated with DMFDMA. Functionalization at position 7 of the tricyclic scaffold was accomplished, before or after cyclisation step, by palladium-catalyzed Suzuki-Miyaura cross-coupling while the pyrimidin-4-amines and N-aryl counterparts were synthesized by microwave-assisted formamide degradation and Dimroth rearrangement, respectively. The final products were evaluated for their potent inhibition of a series of five Ser/Thr kinases (CDK5/p25, CK1δ/ε, CLK1, DYRK1A, GSK3α/ß). Compound 35 showed the best inhibitory activity with an IC50 value of 49 nM and proved to be specific to CLK1 among the panel of tested kinases.


Assuntos
Aminas/química , Aminas/farmacologia , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aminas/síntese química , Aminas/metabolismo , Catálise , Ciclização , Ativação Enzimática/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/metabolismo , Micro-Ondas , Paládio/química , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/química , Pirimidinas/química , Relação Estrutura-Atividade
19.
Biochimie ; 214(Pt A): 57-68, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37473831

RESUMO

The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Herpesvirus Humano 4/genética , RNA , Sistema Imunitário
20.
Pharmaceuticals (Basel) ; 13(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397570

RESUMO

We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan, was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired from harmine. The inhibitory potency of the final products was determined against four protein kinases (CDK5/p25, CK1/ε, GSK3 and DYRK1A). As a result, we have identified promising compounds targeting CK1/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA