Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Lett ; 277: 128279, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32834256

RESUMO

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus via covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

2.
Bioconjug Chem ; 29(6): 1973-2000, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29790738

RESUMO

Polymer-drug conjugation is an attractive approach for target delivering insoluble and highly toxic drugs to tumor sites to overcome the side-effects caused by cancer chemotherapy. In this study we designed and synthesized novel polymer-drug-peptide conjugates for improved specificity on targeting cancer cells. Chemically modified polysaccharide, carboxymethylcellulose (CMC), was conjugated with doxorubicin (DOX) anticancer drug by amide bonds and dually biofunctionalized with integrin-target receptor tripeptide (RGD) and l-arginine (R) as cell-penetrating amino acid for synergistic targeting and enhancing internalization by cancer cells. These bioconjugates were tested as prodrugs against bone, breast, and brain cancer cell lines (SAOS, MCF7, and U87) and a normal cell line (HEK 293T, reference). The physicochemical characterization showed the formation of amide bonds between carboxylates (-RCOO-) from CMC biopolymer and amino groups (-NH2) from DOX and peptides (RGD or R). Moreover, these polymer-drug-peptide bioconjugates formed nanoparticulate colloidal structures and behaved as "smart" drug delivery systems (DDS) promoting remarkable reduction of the cytotoxicity toward normal cells (HEK 293T) while retaining high killing activity against cancer cells. Based on cell viability bioassays, DNA-staining, and confocal laser microscopy, this effect was assigned to the association of physicochemical aspects with the difference of the endocytic pathways and the drug release rates in live cells caused by the biofunctionalization of the macromolecule-drug systems with RGD and l-arginine. In addition, chick chorioallantoic membrane (CAM) assay was performed as an in vivo xenograft model test, which endorsed the in vitro results of anticancer activities of these polymer-drug systems. Thus, prodrug nanocarriers based on CMC-DOX-peptide bioconjugates were developed for simultaneously integrin-targeting and high killing efficacy against cancer cells, while preserving healthy cells with promising perspectives in cancer chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Arginina/metabolismo , Carboximetilcelulose Sódica/metabolismo , Doxorrubicina/administração & dosagem , Portadores de Fármacos/metabolismo , Integrinas/metabolismo , Oligopeptídeos/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Arginina/análogos & derivados , Carboximetilcelulose Sódica/análogos & derivados , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Galinhas , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oligopeptídeos/química
3.
J Dairy Sci ; 100(9): 7051-7054, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28734599

RESUMO

Bovine vaccinia is a neglected zoonosis caused by Vaccinia virus (VACV) and has a major economic and public health effect in Brazil. Previous studies showed infectious VACV particles in milk from either experimentally or naturally infected cows and in fresh cheeses prepared with experimentally contaminated milk. Ripening is a process that leads to major changes in the physical and chemical characteristics of cheese, reducing contamination by spoilage, pathogenic microorganisms, or both. However, it is not known if VACV infectious particles persist after the ripening process. To investigate this issue, viral infectivity at different ripening times was studied in cheeses manufactured with milk experimentally contaminated with VACV strain Guarani P2 (GP2). Cheeses were analyzed at 1, 7, 14, 21, 45, and 60 d of ripening at 25°C. Viral DNA was quantified by real-time PCR, and VACV isolation and titration were performed in Vero cells. The whole experiment was repeated 4 times. Analysis of the mean viral DNA quantification and infectivity indicated a reduction of approximately 2 logs along the ripening process; however, infectious viral particles (1.7 × 102 pfu/mL) could still be recovered at d 60 of ripening. These findings indicate that the ripening process reduces VACV infectivity, but it was not able to inactivate completely the viral particles after 60 d.


Assuntos
Queijo/virologia , Vaccinia virus/fisiologia , Fenômenos Fisiológicos Virais , Animais , Brasil , Bovinos , Chlorocebus aethiops , Feminino , Manipulação de Alimentos , Leite/virologia , Fatores de Tempo , Vacínia/virologia , Células Vero
4.
RSC Adv ; 13(49): 34378-34390, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024978

RESUMO

Among almost 200 types of cancers, glioma is considered one of the most common forms of malignant tumors located in the central nervous system (CNS). Glioblastoma (GBM), one of the deadliest types of brain cancer, remains one of the challenges faced by oncologists. Thus, smartly designed nanomaterials biofunctionalized with polypeptides can offer disruptive strategies relying on the earliest possible diagnosis ("seeing is believing") combined with more efficient therapies for fighting cancer cells. To worsen this scenario, bacteria infections very often pose a serious challenge to cancer-immunodeficient patients under chemotherapy. Thus, in this research, we report for the first time the design and synthesis of novel nanoconjugates composed of photoluminescent ZnS quantum dots (ZnS QDs), which were directly surface biofunctionalized with epsilon-poly-l-lysine (εPL), acting as an amine-rich cell-penetrating peptide (CPP) and antimicrobial peptide agent (AMP). These nanoconjugates (named ZnS@CPP-AMP) were produced through a one-step facile, eco-friendly, and biocompatible colloidal aqueous process to be applied as a proof of concept as nanoprobes for bioimaging GBM cancer cells (U87-MG) associated with synergic antibacterial activity. They were characterized regarding their physicochemical and optical properties associated with the biological activity. The results demonstrated that chemically stable aqueous colloidal nanoconjugates were effectively formed, resembling core-shell (inorganic, ZnS, organic, εPL) nanostructures with positively surface-charged features due to the cationic nature of the amine-rich polypeptide. More importantly, they demonstrated photoluminescent activity, cytocompatibility in vitro, and no significant intracellular reactive oxygen species (ROS) generation. These ZnS@CPP-AMP nanocolloids behaved as fluorescent nanoprobes for bioimaging GBM cancer cells, where the polycationic nature of the εPL biomolecule may have enhanced the cellular uptake. Additionally, they displayed mild antibacterial growth inhibition due to electrostatic interactions with bacterial membranes. Thus, it can be envisioned that these novel photoluminescent colloidal nanoconjugates offer novel nanoplatforms that can be specifically targeted with biomolecules for bioimaging to diagnose highly lethal cancers, such as GBM, and as an adjuvant in antibacterial therapy.

5.
Polymers (Basel) ; 15(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38231902

RESUMO

Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.

7.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297660

RESUMO

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

8.
Int J Biol Macromol ; 210: 530-544, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513094

RESUMO

Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Pontos Quânticos , Animais , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Carboximetilcelulose Sódica/química , Linhagem Celular Tumoral , Cisteína , Doxorrubicina/química , Glioblastoma/tratamento farmacológico , Nanoconjugados/uso terapêutico , Polímeros/uso terapêutico , Pontos Quânticos/química , Nanomedicina Teranóstica , Microambiente Tumoral
9.
Int J Biol Macromol ; 182: 1091-1111, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892028

RESUMO

Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Engenharia Biomédica/métodos , Humanos
10.
Braz J Microbiol ; 52(3): 1623-1626, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081316

RESUMO

Bluetongue virus (BTV) is an RNA virus that infects cattle and sheep. The objective of this study was to compare two real-time PCRs for the detection of BTV and to monitor Orbivirus viremia in sheep and cattle for 6 months. The PCR results showed the occurrence of infected animals throughout the experiment without records of clinical signs. The number of positive animals reduced during the experiment, but some animals were positive for BTV RNA during the entire experiment. The performance of the two RT-qPCRs for BTV detection techniques used in this work revealed a kappa index of 0.71 for cattle and 0.75 for sheep.


Assuntos
Vírus Bluetongue , Bluetongue , Doenças dos Bovinos , Viremia , Animais , Bluetongue/diagnóstico , Vírus Bluetongue/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/virologia , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Viremia/diagnóstico , Viremia/veterinária
11.
Pathogens ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451447

RESUMO

Madariaga virus (MADV) is a member of the eastern equine encephalitis virus (EEEV) complex that circulates in Central and South America. It is a zoonotic, mosquito-borne pathogen, belonging to the family Togaviridae. Disturbances in the natural transmission cycle of this virus result in outbreaks in equines and humans, leading to high case fatality in the former and acute febrile illness or neurological disease in the latter. Although a considerable amount of knowledge exists on the eco-epidemiology of North American EEEV strains, little is known about MADV. In Brazil, the most recent isolations of MADV occurred in 2009 in the States of Paraíba and Ceará, northeast Brazil. Because of that, health authorities have recommended vaccination of animals in these regions. However, in 2019 an equine encephalitis outbreak was reported in a municipality in Ceará. Here, we present the isolation of MADV from two horses that died in this outbreak. The full-length genome of these viruses was sequenced, and phylogenetic analyses performed. Pathological findings from postmortem examination are also discussed. We conclude that MADV is actively circulating in northeast Brazil despite vaccination programs, and call attention to this arbovirus that likely represents an emerging pathogen in Latin America.

12.
Emerg Infect Dis ; 16(6): 976-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20507750

RESUMO

To detect orthopoxvirus in the Brazilian Amazon, we conducted a serosurvey of 344 wild animals. Neutralizing antibodies against orthopoxvirus were detected by plaque-reduction neutralizing tests in 84 serum samples. Amplicons from 6 monkey samples were sequenced. These amplicons identified vaccinia virus genetically similar to strains from bovine vaccinia outbreaks in Brazil.


Assuntos
Doenças dos Macacos/epidemiologia , Vaccinia virus/isolamento & purificação , Vacínia/veterinária , Alouatta , Animais , Tatus , Brasil/epidemiologia , Cebus , Chlorocebus aethiops , DNA Viral/análise , DNA Viral/genética , Raposas , Hemaglutininas Virais/análise , Hemaglutininas Virais/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Testes de Neutralização , Gambás , Peptídeos/análise , Peptídeos/genética , Filogenia , Prevalência , Procyonidae , Roedores , Análise de Sequência de DNA , Vacínia/epidemiologia , Vacínia/imunologia , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Células Vero
13.
Foodborne Pathog Dis ; 7(12): 1491-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20707725

RESUMO

Bovine vaccinia is an emergent zoonosis caused by the Vaccinia virus (VACV). The disease is characterized by the appearance of exanthematic lesions that occur in humans and dairy cows. Previous studies have revealed the presence of infectious viral particles in milk samples during an outbreak of bovine vaccinia in Brazil, indicating the possibility of disease transmission through raw milk. To assess the viability of the virus in milk after thermal treatment and processing procedures, milk samples were experimentally contaminated with 10(3) plaque forming units (PFU)/mL (group I) and 10(5) PFU/mL (group II) VACV Guarani P2 virus, and the third group was not contaminated and served as a control. The samples were submitted to storage temperatures in a cold chamber, freezer for 48 hours, and to low temperature long-time treatment. Moreover, the viral viability was evaluated in cheese produced with contaminated milk using 10(4) PFU/mL VACV Guarani P2. Notably, the virus remained viable in milk after storage for 48 hours in both the cold chamber and the freezer, with a reduction in viral titer of 14.49% and 25.86%, respectively. Group II showed a viral reduction in titer of 61.88% and 75.98%, respectively. Thermal treatment 65°C for 30 minutes showed a reduction of viral titer of 94.83% and 99.99%, respectively, in group I and group II, but still showed remaining viable virus particles. In addition, it was possible to recover infectious viral particles from both the solid curds and the whey of the cheese produced with experimentally contaminated milk. The cheese shows a reduction in viral titer of 84.87% after storage at 4°C for 24 hours. The presence of viable viral particles in milk after both thermal treatment and cheese production indicates a potential public health risk.


Assuntos
Queijo/virologia , Contaminação de Alimentos , Manipulação de Alimentos/métodos , Leite/virologia , Vaccinia virus/isolamento & purificação , Animais , Brasil , Chlorocebus aethiops , Temperatura Alta , Viabilidade Microbiana , Vaccinia virus/patogenicidade , Células Vero , Vírion
14.
J Mater Chem B ; 8(32): 7166-7188, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32614035

RESUMO

Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Corantes Fluorescentes/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Terapia Combinada , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Hipertermia Induzida/efeitos adversos , Campos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Terapia de Alvo Molecular , Imagem Óptica , Estudos Prospectivos , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica
15.
Clin Infect Dis ; 48(3): e37-40, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19115976

RESUMO

Vaccinia virus was used as vaccine to eradicate smallpox. We report a zoonotic case of vaccinia virus infection in a 30-year-old patient who became infected after handling sick dairy cattle. The patient had inflamed lesions and systemic symptoms. Laboratory findings were indicative of down-modulated immune responses to the virus.


Assuntos
Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Vaccinia virus/isolamento & purificação , Vacínia/diagnóstico , Vacínia/veterinária , Zoonoses/transmissão , Zoonoses/virologia , Adulto , Animais , Bovinos , Células Cultivadas , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Pele/patologia , Vacínia/imunologia , Vaccinia virus/imunologia
16.
Virol J ; 6: 47, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19413907

RESUMO

BACKGROUND: Orf virus (ORFV), the prototype of the genus Parapoxvirus (PPV), is the etiological agent of contagious ecthyma, a severe exanthematic dermatitis that afflicts domestic and wild small ruminants. Although South American ORFV outbreaks have occurred and diagnosed there are no South American PPV major membrane glycoprotein B2L gene nucleotide sequences available. CASE PRESENTATION: an outbreak of ovine contagious ecthyma in Midwest Brazil was investigated. The diagnosis was based on clinical examinations and molecular biology techniques. The molecular characterization of the virus was done using PCR amplification, cloning and DNA sequencing of the B2L gene. The phylogenetic analysis demonstrated a high degree of identity with ORFV strains, and the isolate was closest to the ORFV-India 82/04 isolate. Another Brazilian ORFV isolate, NE1, was sequenced for comparative analysis and also showed a high degree of identity with an Asian ORFV strain. CONCLUSION: Distinct ORFV strains are circulating in Brazil. This is the first report on the phylogenetic analysis of an ORFV in South America.


Assuntos
Ectima Contagioso/virologia , Vírus do Orf/classificação , Vírus do Orf/isolamento & purificação , Filogenia , Ovinos , Animais , Sequência de Bases , Brasil/epidemiologia , Surtos de Doenças , Ectima Contagioso/epidemiologia , Dados de Sequência Molecular , Vírus do Orf/genética , Alinhamento de Sequência , Proteínas Virais/genética
17.
Virol J ; 6: 140, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19747382

RESUMO

BACKGROUND: Orthopoxvirus (OPV) and Parapoxvirus (PPV) have been associated with worldwide exanthematic outbreaks. Some species of these genera are able to infect humans and domestic animals, causing serious economic losses and public health impact. Rapid, useful and highly specific methods are required to detect and epidemiologically monitor such poxviruses. In the present paper, we describe the development of a nested-multiplex PCR method for the simultaneous detection of OPV and PPV species directly from exanthematic lesions, with no previous viral isolation or DNA extraction. METHODS AND RESULTS: The OPV/PPV nested-multiplex PCR was developed based on the evaluation and combination of published primer sets, and was applied to the detection of the target pathogens. The method showed high sensitivity, and the specificity was confirmed by amplicon sequencing. Exanthematic lesion samples collected during bovine vaccinia or contagious ecthyma outbreaks were submitted to OPV/PPV nested-multiplex PCR and confirmed its applicability. CONCLUSION: These results suggest that the presented multiplex PCR provides a highly robust and sensitive method to detect OPV and PPV directly from clinical samples. The method can be used for viral identification and monitoring, especially in areas where OPV and PPV co-circulate.


Assuntos
Orthopoxvirus/isolamento & purificação , Parapoxvirus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Animais , Bovinos , Doenças dos Bovinos/virologia , Primers do DNA/genética , Doenças das Cabras/virologia , Cabras , Humanos , Dados de Sequência Molecular , Orthopoxvirus/genética , Parapoxvirus/genética , Ovinos , Doenças dos Ovinos/virologia
18.
Arch Microbiol ; 191(11): 847-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19779698

RESUMO

Clostridium perfringens type D produces enterotoxemia, an enteric disease in ruminants, also known as pulpy kidney disease. Caused by epsilon toxin, enterotoxemia is a major exotoxin produced by this microorganism. Epsilon toxin is also the main component of vaccines against this enteric disorder. In this study, a standardized dot-blot was used to choose strains of C. perfringens type D that are producers of epsilon toxin. Clones producing epsilon toxin were chosen by limiting dilution; after three passages, lethal minimum dose titers were determined by soroneutralization test in mice. These clones produced epsilon toxin 240 times more concentrated than the original strain. The presence of the epsilon toxin gene (etx) was verified by polymerase chain reaction. All clones were positive, including those determined to be negative by dot-blot tests, suggesting that mechanisms in addition to the presence of the etx gene can influence toxin production. The dot-blot test was efficient for the selection of toxigenic colonies of C. perfringens type D and demonstrated that homogeneous populations selected from toxigenic cultures produce higher titers of epsilon toxin.


Assuntos
Toxinas Bacterianas/biossíntese , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/metabolismo , Immunoblotting , Animais , Toxinas Bacterianas/toxicidade , Vacinas Bacterianas , Clostridium perfringens/genética , Clostridium perfringens/imunologia , DNA Bacteriano/genética , Genes Bacterianos , Camundongos , Reação em Cadeia da Polimerase , Testes de Toxicidade
19.
Foodborne Pathog Dis ; 6(9): 1141-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19888798

RESUMO

The vaccinia virus (VACV), which causes exanthemous lesions in dairy cattle and humans, has been associated with several bovine vaccinia outbreaks in Brazil. Currently, no data are available about the safety of milk produced in VACV-affected areas. In this study, 47 milk samples were collected during bovine vaccinia outbreaks and submitted to viral isolation, DNA detection, and nucleotide sequencing of the conserved tk gene. The appearance of characteristic white pocks on the chorioallantoic membranes of chicken eggs, in association with viral cytopathic effects in chicken embryo fibroblasts and phylogenetic data, strongly suggest milk contamination by VACV. This is the first report of VACV detection in and isolation from milk.


Assuntos
Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Leite/virologia , Vaccinia virus/isolamento & purificação , Vacínia/veterinária , Animais , Bioensaio , Brasil/epidemiologia , Bovinos , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Embrião de Galinha , DNA Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Timidina Quinase/genética , Timidina Quinase/metabolismo , Vacínia/epidemiologia , Vacínia/transmissão , Vacínia/virologia , Vaccinia virus/metabolismo , Vírion/isolamento & purificação
20.
Artigo em Inglês | MEDLINE | ID: mdl-30701237

RESUMO

A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA