Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 18(6): 429-34, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18356053

RESUMO

We describe the addition of a fourth visual modality in the animal kingdom, the perception of circular polarized light. Animals are sensitive to various characteristics of light, such as intensity, color, and linear polarization [1, 2]. This latter capability can be used for object identification, contrast enhancement, navigation, and communication through polarizing reflections [2-4]. Circularly polarized reflections from a few animal species have also been known for some time [5, 6]. Although optically interesting [7, 8], their signal function or use (if any) was obscure because no visual system was known to detect circularly polarized light. Here, in stomatopod crustaceans, we describe for the first time a visual system capable of detecting and analyzing circularly polarized light. Four lines of evidence-behavior, electrophysiology, optical anatomy, and details of signal design-are presented to describe this new visual function. We suggest that this remarkable ability mediates sexual signaling and mate choice, although other potential functions of circular polarization vision, such as enhanced contrast in turbid environments, are also possible [7, 8]. The ability to differentiate the handedness of circularly polarized light, a visual feat never expected in the animal kingdom, is demonstrated behaviorally here for the first time.


Assuntos
Crustáceos/fisiologia , Luz , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento de Escolha/fisiologia , Crustáceos/anatomia & histologia , Eletrofisiologia , Masculino , Células Fotorreceptoras de Invertebrados/anatomia & histologia
2.
ISME J ; 3(11): 1301-13, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19516281

RESUMO

Nitric oxide (NO) and nitrous oxide (N(2)O) are formed during N-cycling in complex microbial communities in response to fluctuating molecular oxygen (O(2)) and nitrite (NO(2)(-)) concentrations. Until now, the formation of NO and N(2)O in microbial communities has been measured with low spatial and temporal resolution, which hampered elucidation of the turnover pathways and their regulation. In this study, we combined microsensor measurements with metabolic modeling to investigate the functional response of a complex biofilm with nitrifying and denitrifying activity to variations in O(2) and NO(2)(-). In steady state, NO and N(2)O formation was detected if ammonium (NH(4)(+)) was present under oxic conditions and if NO(2)(-) was present under anoxic conditions. Thus, NO and N(2)O are produced by ammonia-oxidizing bacteria (AOB) under oxic conditions and by heterotrophic denitrifiers under anoxic conditions. NO and N(2)O formation by AOB occurred at fully oxic conditions if NO(2)(-) concentrations were high. Modeling showed that steady-state NO concentrations are controlled by the affinity of NO-consuming processes to NO. Transient accumulation of NO and N(2)O occurred upon O(2) removal from, or NO(2)(-) addition to, the medium only if NH(4)(+) was present under oxic conditions or if NO(2)(-) was already present under anoxic conditions. This showed that AOB and heterotrophic denitrifiers need to be metabolically active to respond with instantaneous NO and N(2)O production upon perturbations. Transiently accumulated NO and N(2)O decreased rapidly after their formation, indicating a direct effect of NO on the metabolism. By fitting model results to measurements, the kinetic relationships in the model were extended with dynamic parameters to predict transient NO release from perturbed ecosystems.


Assuntos
Bactérias/metabolismo , Biofilmes , Óxido Nítrico/metabolismo , Óxido Nitroso/metabolismo , Bactérias/química , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Cinética , Oxigênio/metabolismo , Compostos de Amônio Quaternário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA