Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Environ Manage ; 361: 121241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805962

RESUMO

According to the latest reports, estimated values of 50,000-66 000 t of end-of-life wind turbine blades (WTB) are expected to be decommissioned in Europe in 2025-2030, posing a significant threat from the environmental and waste management perspectives. This study aims to present the preliminary Life Cycle Assessment (LCA) with sensitivity and uncertainty analysis of the lab-scale oxidative liquefaction process of the WTB, as the original method to recover the high-quality glass fibers with simultaneous production of the secondary chemicals: phenols, ketones, acids, and fatty acids, from the oxidation of the epoxy resin from the polymer matrix. The LCA is based on the experimental results of the oxidative liquefaction process carried out on a laboratory scale using a Parr 500 ml batch reactor, at two different conditions sets for the functional unit (FU) of 1 kg of treated WTB. Each of the analyzed scenarios resulted in higher impact indicators compared to the landfilling. The highest quality fibers were obtained at 350 °C and 40 wt % H2O2 content resulted in 5.52 ± 1.20 kgCO2 eq Climate change impact and 97.8 ± 20.6 MJ of Resource use, fossil per kg of recycled WTB. The lowest quality fiber recovered in char, yet well separated from the matrix obtained at 250 °C and the lowest H2O2 content resulted in 0.0953 ± 0.487 kgCO2 eq Climate change impact and 8.84 ± 7.90 MJ of Resource use, fossil per kg of recycled WTB. The hot spot and sensitivity analysis indicated, that the oxidizer for the process - hydrogen peroxide, when acquired as a shelf product causes a significant burden on the whole process, with sensitivity ratios on the total impact indicators varying across the categories from 0.56 to 0.99. Substitution of H2O2 with theoretical 0-input oxidizer allowed to significantly lower environmental load of the recycling process, which in all of the analyzed scenarios presented environmental benefits compared to landfilling with recovery of the glass fiber and secondary chemicals.


Assuntos
Reciclagem , Gerenciamento de Resíduos/métodos , Vento , Oxirredução , Peróxido de Hidrogênio/química
3.
J Environ Manage ; 216: 235-245, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28521956

RESUMO

The separate collection of Used Cooking Oil (UCO) is gaining popularity through several countries in Europe. An appropriate management of UCO waste stream leads to substantial benefits. In this study, we analyse two different possibilities of UCO energy reuse: the direct feed to a reciprocating internal combustion engine (ICE) for cogeneration purpose, and the processing to generate biodiesel. Concerning biodiesel production, we analyse four among conventional and innovative technologies, characterised by different type and amount of used chemicals, heat and electricity consumptions and yields. We perform a systematic evaluation of environmental benefits and drawbacks by applying life cycle assessment (LCA) analysis to compare the alternatives. For the impact assessment, two methods are selected: the Global Warming Potential (GWP) and Cumulative Exergy Consumption (CExC). Results related only to the processing phases (i.e. not including yet the avoided effects) show that the recovery of UCO in cogeneration plant has in general lower values in terms of environmental impacts than its employment in biodiesel production. When products and co-products substitution are included, the savings obtained by the substitution of conventional diesel production, in the biodiesel cases, are significantly higher than the avoided effects for electricity and heat in the cogeneration case. In particular, by using the UCO in the biodiesel production processes, the savings vary from 41.6 to 54.6 GJex per tUCO, and from 2270 to 2860 kg CO2eq per tUCO for CExC and GWP, respectively. A particular focus is put on sensitivity and uncertainty analyses. Overall, high uncertainty of final results for process impacts is observed, especially for the supercritical methanol process. Low uncertainty values are evaluated for the avoided effects. Including the uncertain character of the impacts, cogeneration scenario and NaOH catalysed process of biodiesel production result to be the most suitable solutions from the process impacts and avoided effects perspective.


Assuntos
Biocombustíveis , Culinária , Aquecimento Global , Meio Ambiente , Europa (Continente)
4.
Waste Manag ; 166: 181-193, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172519

RESUMO

The under-sieve fraction (USF), obtained as one of the output streams from the mechanical pretreatment of mixed municipal solid waste, is usually aerobically biologically stabilized before being landfilled. For its characteristics (i.e., moisture and organic content), the USF can be alternatively processed by hydrothermal carbonization (HTC), producing hydrochar to be used for energy production. Based on previous results obtained from laboratory HTC tests of the USF, this work is aimed at evaluating the sustainability of the proposed process from an environmental point of view by applying the Life Cycle Assessment. Various combinations of process parameters (temperature, time, and dry solid-to-water ratios) and two different utilization pathways for hydrochar (the whole amount produced in external lignite power plants or part of it used internally) are compared. The results indicate that environmental performances are mainly connected with process energy consumption: in general, the cases operating at the lowest dilution ratio and the highest temperature provide improved environmental indicators. Co-combusting all the produced hydrochar in external power plants provides better environmental performances than feeding a portion of it to the HTC itself: the avoided effects by displacing lignite are higher than the additional burdens from natural gas use. Then, alternative process water treatments are compared, showing that the burdens added by the process water treatments do not offset the benefits generated by the main HTC process for the major part of the considered environmental indicators. Finally, the proposed process indicates better environmental performances when compared to the conventional method of treating the USF, based on aerobic biostabilization and landfilling.


Assuntos
Eliminação de Resíduos , Animais , Eliminação de Resíduos/métodos , Carbono , Resíduos Sólidos/análise , Temperatura , Carvão Mineral , Estágios do Ciclo de Vida
5.
Materials (Basel) ; 15(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629514

RESUMO

This study aims to investigate the possibilities of municipal waste incineration bottom ash (MSWIBA) utilization in the construction sector. MSWIBA development fits into the European Green Deal, Sustainable Development Goals (SDGs), and the Circular Economy (CE). This manuscript describes current MSWIBA treatment such as solidification, ceramization, vitrification, chemical activation (NaOH, CaOH2, NA2SiO3 + NaOH, Na2CO3 + NaOH, NH4OH), acid treatment with diluted solutions (HCl, H2SO4), chemical stabilization (FeSO4, PO43-), chelation, etc. For the purpose of comparative research, MSWIBA before valorization, after valorization, and after NaOH pre-treatment was investigated. In terms of their physico-chemical properties, the tested samples were examined. Three kinds of MSWIBA were used as a substitute for 30% of cement in mortars. The mortars were tested for 28-day strength. Leachability tests were performed in acid, aggressive, alkali, and neutral water environments. Life Cycle Assessment (LCA) analysis was carried out, which presented the environmental benefits of MSWIBA management in construction.

6.
Waste Manag ; 132: 31-43, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304020

RESUMO

Cheese whey (CW) is the main by-product of the dairy industry and is often considered one of the main agro-industrial biowaste streams to handle, especially within the European Union, where the diary activities play an essential role in the agrarian economy. In the paper, Life Cycle Assessment (LCA) is used to analyse the feasibility of producing polyhydroxyalkanoates (PHA) as the main output of an innovative CW valorisation route which is benchmarked against a conventional anaerobic digestion (AD) process. To this aim, the LCA inventory data are derived from lab-scale PHA accumulation tests performed on real CW, while data from the literature of concern are used for modelling both the PHA extraction from the accumulating biomass and for the alternative CW valorisation through AD. The comparison shows that AD would have better environmental performances than the baseline PHA production scenario. For example, the climate change indicator values result 44.8 and -35.7 kg CO2 eq./t CW for the baseline PHA recovery and AD, respectively. LCA proved to be a useful tool to highlight the weak points of innovative processes and suggest proper improvements. Once improved and again analysed through the LCA, the PHA production process from CW shows that environmental performance comparable to AD may be achieved. With reference, again, to the climate change indicator the value can be reduced to -50.3 kg CO2 eq./t CW for the improved PHA production process.


Assuntos
Queijo , Poli-Hidroxialcanoatos , Animais , Biomassa , Reatores Biológicos , Estágios do Ciclo de Vida , Soro do Leite
7.
Waste Manag ; 114: 274-286, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683243

RESUMO

The concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste. The development and implementation of waste biorefinery concepts can open up a wide array of possibilities to shift waste management towards higher sustainability. However, barriers encompassing environmental, technical, economic, logistic, social and legislative aspects need to be overcome. For instance, waste biorefineries are likely to be complex systems due to the variability, heterogeneity and low purity of waste materials as opposed to dedicated biomasses. This article discusses the drivers that can make the biorefinery concept applicable to waste management and the possibilities for its development to full scale. Technological, strategic and market constraints affect the successful implementations of these systems. Fluctuations in waste characteristics, the level of contamination in the organic waste fraction, the proximity of the organic waste resource, the markets for the biorefinery products, the potential for integration with other industrial processes and disposal of final residues are all critical aspects requiring detailed analysis. Furthermore, interventions from policy makers are necessary to foster sustainable bio-based solutions for waste management.


Assuntos
Gerenciamento de Resíduos , Biocombustíveis , Biomassa , Indústrias
8.
Waste Manag ; 73: 232-246, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28728789

RESUMO

Residual municipal solid waste (MSW) has an average lower heating value higher than 10GJ/Mg in the EU, and can be recovered in modern Waste-to-Energy (WtE) plants, producing combined heat and power (CHP) and reaching high levels of energy recovery. CHP is pinpointed as the best technique for energy recovery from waste. However, in some cases, heat recovery is not technically feasible - due to the absence of a thermal user (industrial plant or district heating) in the vicinity of the WtE plant - and power production remains the sole possibility. In these cases, there are some challenges involved in increasing the energy performance as much as possible. High energy recovery efficiency values are very important for the environmental sustainability of WtE plants. The more electricity and heat is produced, the better the saving of natural resources that can be achieved. Within this frame, the aim of this work is to carry out an environmental assessment, through Life Cycle Assessment, of an MSW WtE plant, considering different sizes and operated in different ways, from power production only to full cogeneration. The main assumption is that the electric conversion efficiency increases as the plant size increases, introducing technical improvements thanks to the economies of scale. Impact assessment results were calculated using ReCiPe 2008 methods. The climate change indicator is positive when the WtE plant is operated in power production only mode, with values decreasing for the increasing size. Values for the climate change are negative when cogeneration is applied, requiring increasing cogeneration ratios for decreasing size. Similarly, the fossil fuel depletion indicator benefits from increase of both the plant size and the cogeneration rate, but it is always negative, meaning that the residual MSW burning with energy recovery always provides a saving of fossil primary energy. Other indicator values are in general negative and are also beneficially affected by increasing the plant size, but they worsen when increasing the cogeneration rate. The remaining indicators - i.e. human toxicity and terrestrial ecotoxicity - always have positive values, which decrease for increasing plant size and increase as the cogeneration rate increases. However, the local context should be evaluated carefully with reference to the type of electricity which is substituted and in view of a future massive production of renewable electricity, because conclusions change accordingly. Finally, it was evaluated that the inclusion of bottom ash recovery - instead of landfilling - can significantly improve the values of several impact assessment indicators.


Assuntos
Mudança Climática , Incineração , Eliminação de Resíduos , Eletricidade , Combustíveis Fósseis , Humanos , Resíduos Sólidos
9.
Environ Sci Pollut Res Int ; 25(36): 35855-35865, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29748811

RESUMO

In this work, ash generated by the combustion of wood in a central heating plant was used to remove and permanently store by accelerated carbonation CO2 contained in a gas mixture simulating biogas. The process was studied as an alternative treatment to the ones currently available on the market for biogas upgrading. The process was investigated at laboratory scale by setting up a facility for directly contacting the wood ash and the synthetic biogas in a fixed bed reactor. The process was able to completely remove CO2 during its initial phase. After about 30 h, CO2 started to appear again in the outlet stream and its concentration rapidly increased. The specific CO2 uptake achieved in solid carbonate form was of about 200 g/kg of dry wood ash. This value is an order of magnitude higher than the ones found for waste incineration bottom ash carrying out similar experiments. The difference was ascribed to the physicochemical properties of the ash, characterized by a fine particle size (d50 < 0.2 mm) and high content of reactive phases with CO2 (e.g., Ca hydroxides). The leaching behavior of the wood ash was examined before and after the accelerated carbonation process showing that the release of several elements was lower after the treatment; Ba leaching in particular decreased by over two orders of magnitude. However, the release of the critical elements for the management of this type of residues (especially Cr and sulfates) appeared not to be significantly affected, while V leaching increased.


Assuntos
Biocombustíveis/análise , Dióxido de Carbono/análise , Sequestro de Carbono , Carbonatos/química , Cinza de Carvão/química , Madeira/química , Instalações de Eliminação de Resíduos
10.
Waste Manag ; 69: 365-376, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28865907

RESUMO

A Life Cycle Assessment (LCA) was applied to compare different alternatives for sewage sludge treatment: such as land spreading, composting, incineration, landfill and wet oxidation. The LCA system boundaries include mechanical dewatering, the alternative treatment, transport, and final disposal/recovery of residues. Cases of recovered materials produced as outputs from the systems, were resolved by expanding the system boundaries to include avoided primary productions. The impact assessment was calculated using the CML-IA baseline method. Results showed that the incineration of sewage sludge with electricity production and solid residues recovery collects the lowest impact indicator values in the categories human toxicity, fresh water aquatic ecotoxicity, acidification and eutrophication, while it has the highest values for the categories global warming and ozone layer depletion. Land spreading has the lowest values for the categories abiotic depletion, fossil fuel depletion, global warming, ozone layer depletion and photochemical oxidation, while it collects the highest values for terrestrial ecotoxicity and eutrophication. Wet oxidation has just one of the best indicators (terrestrial ecotoxicity) and three of the worst ones (abiotic depletion, human toxicity and fresh water aquatic ecotoxicity). Composting process shows intermediate results. Landfill has the worst performances in global warming, photochemical oxidation and acidification. Results indicate that if the aim is to reduce the effect of the common practice of sludge land spreading on human and ecosystem toxicity, on acidification and on eutrophication, incineration with energy recovery would clearly improve the environmental performance of those indicators, but an increase in resource depletion and global warming is unavoidable. However, these conclusions are strictly linked to the effective recovery of solid residues from incineration, as the results are shown to be very sensitive with respect to this assumption. Similarly, the quality of the wet oxidation process residues plays an important role in defining the impact of this treatment.


Assuntos
Eliminação de Resíduos/métodos , Esgotos/análise , Resíduos/análise , Incineração , Itália , Esgotos/estatística & dados numéricos , Instalações de Eliminação de Resíduos , Resíduos/estatística & dados numéricos
11.
Waste Manag ; 37: 26-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535103

RESUMO

The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency.


Assuntos
Conservação dos Recursos Naturais/métodos , Incineração/métodos , Resíduos Sólidos/análise , Incineração/instrumentação
12.
Waste Manag ; 33(12): 2694-705, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24045173

RESUMO

This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction.


Assuntos
Biocombustíveis , Carbonato de Cálcio/síntese química , Dióxido de Carbono/isolamento & purificação , Hidróxidos/química , Compostos de Potássio/química , Hidróxido de Sódio/química , Adsorção
13.
Waste Manag ; 32(4): 640-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21889326

RESUMO

In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.


Assuntos
Conservação de Recursos Energéticos , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Temperatura Alta , Modelos Químicos , Eliminação de Resíduos/economia , Eliminação de Resíduos/instrumentação , Vapor , Termodinâmica , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/instrumentação
14.
Waste Manag ; 32(5): 991-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22230660

RESUMO

This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact.


Assuntos
Biocombustíveis , Meio Ambiente , Tecnologia/métodos , Poluentes Atmosféricos , Dióxido de Carbono , Incineração , Metano , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA