Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837155

RESUMO

Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine (Vitis vinifera L. ssp. vinifera). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.


Assuntos
Evolução Molecular , Flores/genética , Recombinação Genética , Vitis/genética , Flores/fisiologia , Genótipo , Vitis/fisiologia
2.
BMC Plant Biol ; 23(1): 211, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085756

RESUMO

BACKGROUND: Grafting is a horticultural practice used widely across woody perennial crop species to fuse together the root and shoot system of two distinct genotypes, the rootstock and the scion, combining beneficial traits from both. In grapevine, grafting is used in nearly 80% of all commercial vines to optimize fruit quality, regulate vine vigor, and enhance biotic and abiotic stress-tolerance. Rootstocks have been shown to modulate elemental composition, metabolomic profiles, and the shape of leaves in the scion, among other traits. However, it is currently unclear how rootstock genotypes influence shoot system gene expression as previous work has reported complex and often contradictory findings. RESULTS: In the present study, we examine the influence of grafting on scion gene expression in leaves and reproductive tissues of grapevines growing under field conditions for three years. We show that the influence from the rootstock genotype is highly tissue and time dependent, manifesting only in leaves, primarily during a single year of our three-year study. Further, the degree of rootstock influence on scion gene expression is driven by interactions with the local environment. CONCLUSIONS: Our results demonstrate that the role of rootstock genotype in modulating scion gene expression is not a consistent, unchanging effect, but rather an effect that varies over time in relation to local environmental conditions.


Assuntos
Interação Gene-Ambiente , Raízes de Plantas , Raízes de Plantas/metabolismo , Folhas de Planta/genética , Genótipo , Expressão Gênica
3.
Ann Bot ; 130(2): 159-171, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700109

RESUMO

BACKGROUND AND AIMS: Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS: Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS: The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.


Assuntos
Proantocianidinas , Vitaceae , Vitis , Catequina/análogos & derivados , Frutas , Filogenia , Folhas de Planta , Proantocianidinas/análise , Taninos/análise , Vitis/genética
4.
Am J Bot ; 108(4): 571-579, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901305

RESUMO

PREMISE: As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves. We sought to use allometry as an indicator of leaf size and plasticity. METHODS: We measured the ratio of vein-to-blade area from the same 208 vines across four growing seasons (2013, 2015, 2016, and 2017). Matching leaves by vine and node, we analyzed the correlation between the size and shape of grapevine leaves as repeated measures with climate variables across years. RESULTS: The proportion of leaf area occupied by vein and blade exponentially decreased and increased, respectively, during leaf expansion making their ratio a stronger indicator of leaf size than area itself. Total precipitation and leaf wetness hours of the previous year but not the current showed strong negative correlations with vein-to-blade ratio, whereas maximum air temperature from the previous year was positively correlated. CONCLUSIONS: Our results demonstrate that vein-to-blade ratio is a strong allometric indicator of leaf size and plasticity in grapevines measured across years. Grapevine leaf primordia are initiated in buds the year before they emerge, and we found that total precipitation and maximum air temperature of the previous growing season exerted the largest statistically significant effects on leaf morphology. Vein-to-blade ratio is a promising allometric indicator of relationships between leaf morphology and climate, the robustness of which should be explored further.


Assuntos
Vitis , Clima , Folhas de Planta , Estações do Ano , Temperatura
5.
J Exp Bot ; 70(21): 6261-6276, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504758

RESUMO

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) and computational approaches (topological and geometric data analysis and structural simulations) to comprehensively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch angles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for a better understanding of genetic and environmental effects on plant phenotypes.


Assuntos
Imageamento Tridimensional , Inflorescência/anatomia & histologia , Análise por Conglomerados , Análise Discriminante , Frutas/anatomia & histologia , Análise Multivariada , Filogenia , Vitis , Raios X
6.
BMC Genomics ; 18(1): 937, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197332

RESUMO

BACKGROUND: The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in highly heterozygous species such as grapevine (Vitis vinifera L.). This work is an attempt to utilize a de novo-assembled transcriptome of the V. vinifera cultivar 'Riesling' to improve annotation of the grapevine reference genome sequence. RESULTS: Here we show that the transcriptome assembly of a single V. vinifera cultivar is insufficient for a complete genome annotation of the grapevine reference genome constructed from V. vinifera PN40024. Further, we provide evidence that the gene models we identified cannot be completely anchored to the previously published V. vinifera PN40024 gene models. In addition to these findings, we present a computational pipeline for the de novo identification of lncRNAs. Our results demonstrate that, in grapevine, lncRNAs are significantly different from protein coding transcripts in such metrics as length, GC-content, minimum free energy, and length-corrected minimum free energy. CONCLUSIONS: In grapevine, high-level heterozygosity necessitates that transcriptome characterization be based on cultivar-specific reference genome sequences. Our results strengthen the hypothesis that lncRNAs have thermodynamically different properties than protein-coding RNAs. The analyses of both coding and non-coding RNAs will be instrumental in uncovering inter-cultivar variation in wild and cultivated grapevine species.


Assuntos
Genoma de Planta , Modelos Genéticos , Anotação de Sequência Molecular , RNA Longo não Codificante/genética , Vitis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Valores de Referência , Vitis/crescimento & desenvolvimento
7.
Plant Physiol ; 170(3): 1480-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826220

RESUMO

The shapes of leaves are dynamic, changing over evolutionary time between species, within a single plant producing different shaped leaves at successive nodes, during the development of a single leaf as it allometrically expands, and in response to the environment. Notably, strong correlations between the dissection and size of leaves with temperature and precipitation exist in both the paleorecord and extant populations. Yet, a morphometric model integrating evolutionary, developmental, and environmental effects on leaf shape is lacking. Here, we continue a morphometric analysis of >5,500 leaves representing 270 grapevines of multiple Vitis species between two growing seasons. Leaves are paired one-to-one and vine-to-vine accounting for developmental context, between growing seasons. Linear discriminant analysis reveals shape features that specifically define growing season, regardless of species or developmental context. The shape feature, a more pronounced distal sinus, is associated with the colder, drier growing season, consistent with patterns observed in the paleorecord. We discuss the implications of such plasticity in a long-lived woody perennial, such as grapevine (Vitis spp.), with respect to the evolution and functionality of plant morphology and changes in climate.


Assuntos
Clima , Modelos Biológicos , Folhas de Planta/fisiologia , Vitis/fisiologia , Evolução Biológica , Meio Ambiente , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura , Vitis/classificação
8.
New Phytol ; 210(1): 343-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26580864

RESUMO

Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processes and environmental influences. Because leaf shape can vary in many different ways, theoretically, the effects of distinct developmental and evolutionary processes are separable, even within the shape of a single leaf. Here, we measured the shapes of > 3200 leaves representing > 270 vines from wild relatives of domesticated grape (Vitis spp.) to determine whether leaf shapes attributable to genetics and development are separable from each other. We isolated latent shapes (multivariate signatures that vary independently from each other) embedded within the overall shape of leaves. These latent shapes can predict developmental stages independent from species identity and vice versa. Shapes predictive of development were then used to stage leaves from 1200 varieties of domesticated grape (Vitis vinifera), revealing that changes in timing underlie leaf shape diversity. Our results indicate that distinct latent shapes combine to produce a composite morphology in leaves, and that developmental and evolutionary contributions to shape vary independently from each other.


Assuntos
Evolução Biológica , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Vitis/anatomia & histologia , Vitis/crescimento & desenvolvimento , Especificidade da Espécie , Fatores de Tempo
9.
BMC Plant Biol ; 14: 103, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755338

RESUMO

BACKGROUND: WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. RESULTS: We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. CONCLUSIONS: We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape.


Assuntos
Temperatura Baixa , Genes de Plantas , Família Multigênica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Vitis/genética , Vitis/fisiologia , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Análise por Conglomerados , Sequência Conservada/genética , Cruzamentos Genéticos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vitis/efeitos dos fármacos
10.
Hortic Res ; 11(2): uhad286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38487294

RESUMO

Accurate and real-time monitoring of grapevine freezing tolerance is crucial for the sustainability of the grape industry in cool climate viticultural regions. However, on-site data are limited due to the complexity of measurement. Current prediction models underperform under diverse climate conditions, which limits the large-scale deployment of these methods. We combined grapevine freezing tolerance data from multiple regions in North America and generated a predictive model based on hourly temperature-derived features and cultivar features using AutoGluon, an automated machine learning engine. Feature importance was quantified by AutoGluon and SHAP (SHapley Additive exPlanations) value. The final model was evaluated and compared with previous models for its performance under different climate conditions. The final model achieved an overall 1.36°C root-mean-square error during model testing and outperformed two previous models using three test cultivars at all testing regions. Two feature importance quantification methods identified five shared essential features. Detailed analysis of the features indicates that the model has adequately extracted some biological mechanisms during training. The final model, named NYUS.2, was deployed along with two previous models as an R shiny-based application in the 2022-23 dormancy season, enabling large-scale and real-time simulation of grapevine freezing tolerance in North America for the first time.

11.
GigaByte ; 2023: gigabyte84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408731

RESUMO

'Chambourcin' is a French-American interspecific hybrid grape grown in the eastern and midwestern United States and used for making wine. Few genomic resources are available for hybrid grapevines like 'Chambourcin'. Here, we assembled the genome of 'Chambourcin' using PacBio HiFi long-read, Bionano optical map, and Illumina short-read sequencing technologies. We generated an assembly for 'Chambourcin' with 26 scaffolds, with an N50 length of 23.3 Mb and an estimated BUSCO completeness of 97.9%. We predicted 33,791 gene models and identified 16,056 common orthologs between 'Chambourcin', V. vinifera 'PN40024' 12X.v2, VCOST.v3, Shine Muscat and V. riparia Gloire. We found 1,606 plant transcription factors from 58 gene families. Finally, we identified 304,571 simple sequence repeats (up to six base pairs long). Our work provides the genome assembly, annotation and the protein and coding sequences of 'Chambourcin'. Our genome assembly is a valuable resource for genome comparisons, functional genomic analyses and genome-assisted breeding research.

12.
Genome Biol ; 24(1): 290, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111050

RESUMO

BACKGROUND: Capturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. RESULTS: Here we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce's disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. CONCLUSIONS: This study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research.


Assuntos
Genoma de Planta , Vitis , Vitis/genética , Melhoramento Vegetal , Genômica , América do Norte
13.
Front Insect Sci ; 2: 971221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468776

RESUMO

The spotted lanternfly, a newly invasive insect in the U.S. that is a great concern for the grapevine industry, produces damage on its host plants through aggressive feeding, using a piercing and sucking method to feed on the phloem of plants. In the eastern US, adult SLF can invade vineyards through fruit ripening until the end of the growing season; however, it is still unclear how prolonged late-season SLF feeding can affect the health of grapevines, as well as the host responses to this extensive damage. Thus, we have performed a comprehensive genome-wide transcriptome analysis in grapevines heavily infested by the spotted lanternfly, as it occurs in Pennsylvania vineyards, and compared it to other relevant transcriptomes in grapes with different degrees to susceptibility to similar pests. Among a variety of plant responses, we highlight here a subset of relevant biological pathways that distinguish or are common to the spotted lanternfly and other phloem feeders in grapevine. The molecular interaction between spotted lanternfly and the vine begins with activation of signal transduction cascades mediated mainly by protein kinase genes. It also induces the expression of transcription factors in the nucleus, of other signaling molecules like phytohormones and secondary metabolites, and their downstream target genes responsible for defense and physiological functions, such as detoxification and photosynthesis. Grapevine responses furthermore include the activation of genes for cell wall strengthening via biosynthesis of major structural components. With this study, we hope to provide the regulatory network to explain effects that the invasive spotted lanternfly has on grapevine health with the goal to improve its susceptibility.

14.
Plants (Basel) ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35270166

RESUMO

Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.

15.
New Phytol ; 191(3): 840-849, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21443650

RESUMO

• Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow.


Assuntos
Brassica/efeitos dos fármacos , Brassica/genética , Fluxo Gênico/genética , Glicina/análogos & derivados , Lepidópteros/fisiologia , Animais , Biodiversidade , Brassica/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Brassica napus/fisiologia , Brassica rapa/efeitos dos fármacos , Brassica rapa/genética , Brassica rapa/fisiologia , Genótipo , Glicina/farmacologia , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Reprodução/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Seleção Genética , Transgenes/genética , Glifosato
16.
Ecol Appl ; 21(2): 525-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563582

RESUMO

We constructed a mixed-species community designed to simulate roadside and field edge plant communities and exposed it to glyphosate drift in order to test three hypotheses: (1) higher fitness in transgenic Brassica carrying the CP4 EPSPS transgene that confers resistance to glyphosate will result in significant changes in the plant community relative to control communities; (2) given repeated years of glyphosate drift selective pressure, the increased fitness of the transgenic Brassica with CP4 EPSPS will contribute to an increase in the proportion of transgenic progeny produced in plant communities; and (3) the increased fitness of Brassica carrying the CP4 EPSPS transgene will contribute to decreased levels of mycorrhizal infection and biomass in a host species (Trifolium incarnatum). Due to regulatory constraints that prevented the use of outdoor plots for our studies, in 2005 we established multispecies communities in five large cylindrical outdoor sunlit mesocosms (plastic greenhouses) designed for pollen confinement. Three of the community members were sexually compatible Brassica spp.: transgenic glyphosate-resistant canola (B. napus) cultivar (cv.) RaideRR, glyphosate-sensitive non-transgenic B. napus cv. Sponsor, and a weedy B. rapa (GRIN Accession 21735). Additional plant community members were the broadly distributed annual weeds Digitaria sanguinalis, Panicum capillare, and Lapsana communis. Once annually in 2006 and 2007, two mesocosms were sprayed with glyphosate at 10% of the field application rate to simulate glyphosate drift as a selective pressure. After two years, changes were observed in community composition, plant density, and biomass in both control and treatment mesocosms. In control mesocosms, the weed D. sanguinalis (crabgrass) began to dominate. In glyphosate drift-treated mesocosms, Brassica remained the dominant genus and the incidence of the CP4 EPSPS transgene increased in the community. Shoot biomass and mycorrhizal infection in Trifolium incarnatum planted in 2008 were significantly lower in mesocosms that had received glyphosate drift treatments. Our results suggest that, over time, glyphosate drift can contribute to persistence of Brassica that express the CP4 EPSPS transgene and that increased representation of Brassica (a non-mycorrhizal host) within plant communities may indirectly negatively impact beneficial ecosystem services associated with arbuscular mycorrhiza.


Assuntos
Biodiversidade , Brassica/efeitos dos fármacos , Brassica/genética , Glicina/análogos & derivados , Herbicidas/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glicina/farmacologia , Resistência a Herbicidas/genética , Micorrizas , Plantas Geneticamente Modificadas , Microbiologia do Solo , Glifosato
17.
PeerJ ; 9: e10773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614279

RESUMO

Macro and micro nutrient accumulation affects all stages of plant growth and development. When nutrient deficiencies or excesses occur, normal plant growth is altered resulting in symptoms such as leaf chlorosis, plant stunting or death. In grapes, few genomic regions associated with nutrient accumulation or deficiencies have been identified. Our study evaluated micro and macro nutrient concentrations in Vitis vinifera L. to identify associated SNPs using an association approach with genotype by sequencing data. Nutrient concentrations and foliar symptoms (leaf chlorosis and stunting) were compared among 249 F1 Vitis vinifera individuals in 2015 and 2016. Foliar symptoms were consistent (≥90%) between years and correlated with changes in nutrient concentrations of magnesium (r = 0.65 and r = 0.38 in 2015 and 2016, respectively), aluminum (r = 0.24 and r = 0.49), iron (r = 0.21 and r = 0.49), and sodium (r = 0.32 and r = 0.21). Single nucleotide polymorphisms associated with symptoms, sodium, and magnesium were detected on each chromosome with the exception of 5, 7 and 17 depending on the trait and genome used for analyses explaining up to 40% of the observed variation. Symptoms and magnesium concentration were primarily associated with SNPs on chromosome 3, while SNPs associated with increased sodium content were primarily found on chromosomes 11 and 18. Mean concentrations for each nutrient varied between years in the population between symptomatic and asymptomatic plants, but relative relationships were mostly consistent. These data suggest a complex relationship among foliar symptoms and micro and macro nutrients accumulating in grapevines.

18.
Gigascience ; 10(12)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34966928

RESUMO

BACKGROUND: Modern biological approaches generate volumes of multi-dimensional data, offering unprecedented opportunities to address biological questions previously beyond reach owing to small or subtle effects. A fundamental question in plant biology is the extent to which below-ground activity in the root system influences above-ground phenotypes expressed in the shoot system. Grafting, an ancient horticultural practice that fuses the root system of one individual (the rootstock) with the shoot system of a second, genetically distinct individual (the scion), is a powerful experimental system to understand below-ground effects on above-ground phenotypes. Previous studies on grafted grapevines have detected rootstock influence on scion phenotypes including physiology and berry chemistry. However, the extent of the rootstock's influence on leaves, the photosynthetic engines of the vine, and how those effects change over the course of a growing season, are still largely unknown. RESULTS: Here, we investigate associations between rootstock genotype and shoot system phenotypes using 5 multi-dimensional leaf phenotyping modalities measured in a common grafted scion: ionomics, metabolomics, transcriptomics, morphometrics, and physiology. Rootstock influence is ubiquitous but subtle across modalities, with the strongest signature of rootstock observed in the leaf ionome. Moreover, we find that the extent of rootstock influence on scion phenotypes and patterns of phenomic covariation are highly dynamic across the season. CONCLUSIONS: These findings substantially expand previously identified patterns to demonstrate that rootstock influence on scion phenotypes is complex and dynamic and underscore that broad understanding necessitates volumes of multi-dimensional data previously unmet.


Assuntos
Folhas de Planta , Raízes de Plantas , Genótipo , Fenótipo , Folhas de Planta/genética , Raízes de Plantas/genética , Estações do Ano
19.
Ann Bot ; 106(6): 957-65, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20852306

RESUMO

BACKGROUND AND AIMS: With the advent of transgenic crops, genetically modified, herbicide-resistant Brassica napus has become a model system for examining the risks and potential ecological consequences of escape of transgenes from cultivation into wild compatible species. Escaped transgenic feral B. napus and hybrids with compatible weedy species have been identified outside of agriculture and without the apparent selection for herbicide resistance. However, herbicide (glyphosate) exposure can extend beyond crop field boundaries, and a drift-level of herbicide could function as a selective agent contributing to increased persistence of transgenes in the environment. METHODS: The effects of a drift level (0·1 × the field application rate) of glyphosate herbicide and varied levels of plant competition were examined on plant fitness-associated traits and gene flow in a simulated field plot, common garden experiment. Plants included transgenic, glyphosate-resistant B. napus, its weedy ancestor B. rapa, and hybrid and advanced generations derived from them. KEY RESULTS: The results of this experiment demonstrate reductions in reproductive fitness for non-transgenic genotypes and a contrasting increase in plant fitness for transgenic genotypes as a result of glyphosate-drift treatments. Results also suggest that a drift level of glyphosate spray may influence the movement of transgenes among transgenic crops and weeds and alter the processes of hybridization and introgression in non-agronomic habitats by impacting flowering phenology and pollen availability within the community. CONCLUSIONS: The results of this study demonstrate the potential for persistence of glyphosate resistance transgenes in weedy plant communities due to the effect of glyphosate spray drift on plant fitness. Additionally, glyphosate drift has the potential to change the gene-flow dynamics between compatible transgenic crops and weeds, simultaneously reducing direct introgression into weedy species while contributing to an increase in the transgenic seed bank.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/genética , Fluxo Gênico/genética , Glicina/análogos & derivados , Transgenes/genética , Brassica rapa/efeitos dos fármacos , Brassica rapa/genética , Quimera/genética , Glicina/farmacologia , Herbicidas/farmacologia , Glifosato
20.
Hortic Res ; 7(1): 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528704

RESUMO

Vitis riparia, a critically important Native American grapevine species, is used globally in rootstock and scion breeding and contributed to the recovery of the French wine industry during the mid-19th century phylloxera epidemic. This species has abiotic and biotic stress tolerance and the largest natural geographic distribution of the North American grapevine species. Here we report an Illumina short-read 369X coverage, draft de novo heterozygous genome sequence of V. riparia Michx. 'Manitoba 37' with the size of ~495 Mb for 69,616 scaffolds and a N50 length of 518,740 bp. Using RNAseq data, 40,019 coding sequences were predicted and annotated. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models found 96% of the complete BUSCOs in this assembly. The assembly continuity and completeness were further validated using V. riparia ESTs, BACs, and three de novo transcriptome assemblies of three different V. riparia genotypes resulting in >98% of respective sequences/transcripts mapping with this assembly. Alignment of the V. riparia assembly and predicted CDS with the latest V. vinifera 'PN40024' CDS and genome assembly showed 99% CDS alignment and a high degree of synteny. An analysis of plant transcription factors indicates a high degree of homology with the V. vinifera transcription factors. QTL mapping to V. riparia 'Manitoba 37' and V. vinifera PN40024 has identified genetic relationships to phenotypic variation between species. This assembly provides reference sequences, gene models for marker development and understanding V. riparia's genetic contributions in grape breeding and research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA