Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Exp Biol ; 221(Pt 23)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30297514

RESUMO

Activation of the immune system induces rapid reductions in hypothalamic-pituitary-gonadal (HPG) axis activity, which in turn decreases secretion of sex steroids. This response is likely adaptive for survival by temporarily inhibiting reproduction to conserve energy; however, the physiological mechanisms controlling this response remain unclear. The neuropeptide kisspeptin is a candidate to mediate the decrease in sex hormones seen during sickness through its key regulation of the HPG axis. In this study, the effects of acute immune activation on the response to kisspeptin were assessed in male Siberian hamsters (Phodopus sungorus). Specifically, an immune response was induced in animals by a single treatment of lipopolysaccharide (LPS), and reproductive hormone concentrations were determined in response to subsequent injections of exogenous kisspeptin. Saline-treated controls showed a robust increase in circulating testosterone in response to kisspeptin; however, this response was blocked in LPS-treated animals. Circulating luteinizing hormone (LH) levels were elevated in response to kisspeptin in both LPS- and saline-treated groups and, thus, were unaffected by LPS treatment, suggesting gonad-level inhibition of testosterone release despite central HPG activation. In addition, blockade of glucocorticoid receptors by mifepristone did not attenuate the LPS-induced inhibition of testosterone release, suggesting that circulating glucocorticoids do not mediate this phenomenon. Collectively, these findings reveal that acute endotoxin exposure rapidly renders the gonads less sensitive to HPG stimulation, thus effectively inhibiting sex hormone release. More broadly, these results shed light on the effects of immune activation on the HPG axis and help elucidate the mechanisms controlling energy allocation and reproduction.


Assuntos
Kisspeptinas/farmacologia , Lipopolissacarídeos/farmacologia , Hormônio Luteinizante/sangue , Phodopus/fisiologia , Animais , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/sangue
2.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979148

RESUMO

The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles 1-9 . How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinal in vivo fiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships.

3.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36798395

RESUMO

A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.

4.
Neuron ; 110(5): 737-739, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35240060

RESUMO

In this issue of Neuron, Liu et al. (2022) molecularly identify subsets of estrogen receptor-1-positive neurons within the female ventrolateral subdivision of the ventromedial hypothalamus activated during sexual receptivity versus agonistic behaviors in distinct reproductive states and demonstrate that these subsets control state-dependent changes in social behaviors.


Assuntos
Comportamento Sexual Animal , Animais , Feminino , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Social
5.
iScience ; 25(6): 104412, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35663035

RESUMO

Prosocial behavior, helping others in need in particular, occurs preferentially in response to the perceived distress of one's own group members or ingroup. To investigate the development of ingroup bias, neural activity during a helping test was analyzed in adolescent and adult rats. Although adults selectively released trapped ingroup members, adolescent rats helped both ingroup and outgroup members, suggesting that ingroup bias emerges in adulthood. Analysis of brain-wide neural activity, indexed by expression of the early-immediate gene c-Fos, revealed increased activity for ingroup members across a broad set of regions previously associated with empathy. Adolescents showed reduced hippocampal and insular activity and increased orbitofrontal cortex activity compared to adults. Non-helper adolescents demonstrated increased amygdala connectivity. These findings demonstrate that biases for group-dependent prosocial behavior develop with age in rats and suggest that specific brain regions contribute to prosocial selectivity, pointing to possible targets for the functional modulation of ingroup bias.

6.
Gen Comp Endocrinol ; 170(1): 172-9, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20937279

RESUMO

Most animals experience marked changes in reproductive status across development that are regulated by changes in the hypothalamo-pituitary-gonadal (HPG) axis. The upstream mechanisms regulating this axis remain less well understood. The neuropeptide kisspeptin serves as a positive regulator of reproduction; the precise actions of kisspeptin on the HPG axis in animals of differing developmental and seasonal reproductive states, however, remain unresolved. Further, sex differences in response to kisspeptin have not been fully explored. In Experiment 1, we investigated whether sensitivity to a broad range of kisspeptin doses differed in adult male and female Siberian hamsters held on reproductively inhibitory or stimulatory photoperiods. In Experiment 2, we asked whether the response to kisspeptin differed across stages of reproductive development. Males and females displayed elevated luteinizing hormone (LH) in response to kisspeptin; however, the sexes differed in this response, with males showing greater LH responses to kisspeptin than females. Hamsters responded to kisspeptin across all stages of reproductive development, although the magnitude of this response differed between animals of differental ages and between the sexes. Males showed significant increases in LH at an earlier developmental age than females; females also showed blunted LH responses during early adulthood whereas males remained relatively constant in their response to kisspeptin. These findings suggest that reproductively active and inactive hamsters are responsive to kisspeptin, but that the sexes differ in their responsiveness. Collectively, these data provide further insight into the basic actions of kisspeptin in the regulation of reproduction and provide a potential mechanism for the regulation of differential reproductive responses between the sexes.


Assuntos
Reprodução/fisiologia , Proteínas Supressoras de Tumor/farmacologia , Animais , Cricetinae , Feminino , Gônadas/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Kisspeptinas , Masculino , Phodopus , Fotoperíodo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Reprodução/efeitos dos fármacos
7.
Biomolecules ; 11(2)2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672939

RESUMO

The brain's capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.


Assuntos
Proliferação de Células/fisiologia , Hormônios/fisiologia , Longevidade , Oligodendroglia/citologia , Animais , Humanos
8.
Biomolecules ; 11(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669242

RESUMO

Alterations in myelin, the protective and insulating sheath surrounding axons, affect brain function, as is evident in demyelinating diseases where the loss of myelin leads to cognitive and motor dysfunction. Recent evidence suggests that changes in myelination, including both hyper- and hypo-myelination, may also play a role in numerous neurological and psychiatric diseases. Protecting myelin and promoting remyelination is thus crucial for a wide range of disorders. Oligodendrocytes (OLs) are the cells that generate myelin, and oligodendrogenesis, the creation of new OLs, continues throughout life and is necessary for myelin plasticity and remyelination. Understanding the regulation of oligodendrogenesis and myelin plasticity within disease contexts is, therefore, critical for the development of novel therapeutic targets. In our companion manuscript, we review literature demonstrating that multiple hormone classes are involved in the regulation of oligodendrogenesis under physiological conditions. The majority of hormones enhance oligodendrogenesis, increasing oligodendrocyte precursor cell differentiation and inducing maturation and myelin production in OLs. Thus, hormonal treatments present a promising route to promote remyelination. Here, we review the literature on hormonal regulation of oligodendrogenesis within the context of disorders. We focus on steroid hormones, including glucocorticoids and sex hormones, peptide hormones such as insulin-like growth factor 1, and thyroid hormones. For each hormone, we describe whether they aid in OL survival, differentiation, or remyelination, and we discuss their mechanisms of action, if known. Several of these hormones have yielded promising results in both animal models and in human conditions; however, a better understanding of hormonal effects, interactions, and their mechanisms will ultimately lead to more targeted therapeutics for myelin repair.


Assuntos
Encéfalo/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Aminoácidos/metabolismo , Animais , Apoptose , Diferenciação Celular , Estrogênios/metabolismo , Feminino , Hormônios/metabolismo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Melatonina/metabolismo , Camundongos , Neuroglia/metabolismo , Prolactina/metabolismo , Ratos , Remielinização , Esteroides/metabolismo , Hormônios Tireóideos/metabolismo
9.
Neurobiol Stress ; 14: 100319, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33937444

RESUMO

Stress early in life can have a major impact on brain development, and there is increasing evidence that childhood stress confers vulnerability for later developing psychiatric disorders. In particular, during peri-adolescence, brain regions crucial for emotional regulation, such as the prefrontal cortex (PFC), amygdala (AMY) and hippocampus (HPC), are still developing and are highly sensitive to stress. Changes in myelin levels have been implicated in mental illnesses and stress effects on myelin and oligodendrocytes (OLs) are beginning to be explored as a novel and underappreciated mechanism underlying psychopathologies. Yet there is little research on the effects of acute stress on myelin during peri-adolescence, and even less work exploring sex-differences. Here, we used a rodent model to test the hypothesis that exposure to acute traumatic stress as a juvenile would induce changes in OLs and myelin content across limbic brain regions. Male and female juvenile rats underwent 3 h of restraint stress with exposure to a predator odor on postnatal day (p) 28. Acute stress induced a physiological response, increasing corticosterone release and reducing weight gain in stress-exposed animals. Brain sections containing the PFC, AMY and HPC were taken either in adolescence (p40), or in adulthood (p95) and stained for markers of OLs and myelin. We found that acute stress induced sex-specific changes in grey matter (GM) myelination and OLs in both the short- and long-term. Exposure to a single stressor as a juvenile increased GM myelin content in the AMY and HPC in p40 males, compared to the respective control group. At p40, corticosterone release during stress exposure was also positively correlated with GM myelin content in the AMY of male rats. Single exposure to juvenile stress also led to long-term effects exclusively in female rats. Compared to controls, stress-exposed females showed reduced GM myelin content in all three brain regions. Acute stress exposure decreased PFC and HPC OL density in p40 females, perhaps contributing towards this observed long-term decrease in myelin content. Overall, our findings suggest that the juvenile brain is vulnerable to exposure to a brief severe stressor. Exposure to a single short traumatic event during peri-adolescence produces long-lasting changes in GM myelin content in the adult brain of female, but not male, rats. These findings highlight myelin plasticity as a potential contributor to sex-specific sensitivity to perturbation during a critical window of development.

10.
Transl Psychiatry ; 11(1): 631, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903726

RESUMO

Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.


Assuntos
Substância Cinzenta , Bainha de Mielina , Tonsila do Cerebelo/metabolismo , Animais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos
11.
Neuropsychopharmacology ; 41(8): 2160-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26830961

RESUMO

In times of stress, social support can serve as a potent buffering mechanism that enhances resilience. In humans, stress can promote protective affiliative interactions and prosocial behavior. Yet, stress also precipitates psychopathologies characterized by social withdrawal such as post-traumatic stress disorder (PTSD) and depression. The factors that drive adaptive vs maladaptive social responses to stress are not yet clear. Rodent studies have focused on pair-bonded, opposite-sex mates and suggest that a variety of stressors can induce social support-like behaviors. However, between same-sex conspecifics-particularly males-stress effects on social bonding are less understood and often associated with aggression and social unrest. We thus sought to investigate if a moderate stressor-3 h of acute immobilization-impacts social-support behaviors differently when experienced in a neutral vs more innately threatening context (ie, paired with predator odor). We found that moderate stress increased social support-seeking behavior in rat cagemates and facilitated long-term sharing of a limited water resource, decreased aggression, and strongly defined dominance ranks (an indicator of home cage stability). In contrast, experiencing the same stressor in the presence of predator odor eliminated the positive behavioral effects of moderate stress. Importantly, hypothalamic oxytocin (OT) signaling increased coincident with stress in a neutral-but not a predator odor-context. Our results define a novel rodent model of divergent stress effects on social affiliation and OT signaling dependent on odor context with particularly strong relevance to stress-related disorders such as PTSD, which are characterized by a disrupted ability to seek and maintain social bonds.


Assuntos
Apego ao Objeto , Ocitocina/fisiologia , Comportamento Social , Estresse Psicológico , Agressão , Animais , Comportamento Animal , Hipotálamo/metabolismo , Masculino , Odorantes , Ocitocina/metabolismo , Ratos Sprague-Dawley , Restrição Física , Predomínio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA