Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Am Chem Soc ; 146(13): 9465-9475, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507822

RESUMO

Dry reforming of methane (DRM) is a promising technique for converting greenhouse gases (namely, CH4 and CO2) into syngas. However, traditional thermocatalytic processes require high temperatures and suffer from low selectivity and coke-induced instability. Here, we report high-entropy alloys loaded on SrTiO3 as highly efficient and coke-resistant catalysts for light-driven DRM without a secondary source of heating. This process involves carbon exchange between reactants (i.e., CO2 and CH4) and oxygen exchange between CO2 and the lattice oxygen of supports, during which CO and H2 are gradually produced and released. Such a mechanism deeply suppresses the undesired side reactions such as reverse water-gas shift reaction and methane deep dissociation. Impressively, the optimized CoNiRuRhPd/SrTiO3 catalyst achieves ultrahigh activity (15.6/16.0 mol gmetal-1 h-1 for H2/CO production), long-term stability (∼150 h), and remarkable selectivity (∼0.96). This work opens a new avenue for future energy-efficient industrial applications.

2.
J Am Chem Soc ; 146(1): 970-978, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38155551

RESUMO

Light-driven hydrogenation of nitro compounds to functionalized amines is of great importance yet a challenge for practical applications, which calls for the development of high-performance, nonprecious photocatalysts and efficient catalytic systems. Herein, we report a high-efficiency Fe3O4@TiO2 photocatalyst via a sol-gel and subsequent pyrolysis strategy, which exhibits desirable photothermal hydrogenation performance of nitro compounds to functionalized amines with the excellent selectivity of >90% exceeding those of the state-of-the-art heterogeneous photocatalysts. Our experimental results and theoretical calculations for the first time reveal that Fe3O4 is the major active phase, and the strong metal-support interaction between Fe3O4 and reducible TiO2 further leads to performance improvement, taking advantage of the enhanced photothermal effect and the improved adsorption for the reactant and hydrazine hydrate. Notably, a variety of halonitrobenzenes and pharmaceutical intermediates can be completely converted to functionalized amines with high selectivities, even in gram-scale reactions. This work provides a new insight into the rational design of nonprecious photo/thermo-catalysts for other catalytic reactions.

3.
Small ; : e2402808, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764281

RESUMO

The metal indium sulfides have attracted extensive research interest in photocatalysis due to regulable atomic configuration and excellent optoelectronic properties. However, the synthesis of metal indium sulfide atomic layers is still challenging since intrinsic non-van-der-Waals layered structures of some components. Here, a surfactant self-assembly growth mechanism is proposed to controllably synthesize metal indium sulfide atomic layers. Eleven types of atomic layers with tunable compositions, thickness, and defect concentrations are successfully achieved namely In2S3, MgIn2S4, CaIn2S4, MnIn2S4, FeIn2S4, ZnIn2S4, Zn2In2S5, Zn4In16S33, CuInS2, CuIn5S8, and CdIn2S4. The typical CaIn2S4 shows a defect-dependence activity for CO2 photoreduction. The designed S vacancies in CaIn2S4 can serve as catalytic centers to activate CO2 molecules via localized electrons for π-back-donation. The engineered S vacancies tune the non-covalent interaction with CO2 and intermediates, manages to tune the free energy, and lower the reaction energy barrier. As a result, the defect-rich CaIn2S4 displays 2.82× improved reduction rate than defect-poor CaIn2S4. Meantime, other components also display promising photocatalytic performance, such as Zn2In2S5 with a H2O2 photosynthesis rate of 292 µmol g-1 h-1 and CuInS2 with N2-NH4 + conversion rate of 54 µmol g-1 h-1. This work paves the way for the multidisciplinary exploration of metal indium sulfide atomic layers with unique photocatalysis properties.

4.
Angew Chem Int Ed Engl ; 63(9): e202317852, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38141033

RESUMO

One-unit-cell, single-crystal, hexagonal CuInP2 S6 atomically thin sheets of≈0.81 nm in thickness was successfully synthesized for photocatalytic reduction of CO2 . Exciting ethene (C2 H4 ) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu-In dual sites confined on the lateral edge of the CuInP2 S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2 H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C-C coupling reaction into C2 H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.

5.
Angew Chem Int Ed Engl ; 63(13): e202317628, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305482

RESUMO

The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial-level current densities (i.e., 200 mA cm-2 ) for 300 h on membrane electrode assembly using scalable lattice-distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm-2 , reaching a production rate of 21.7 mmol cm-2 h-1 . To assess the practicality of this system, we perform a comprehensive techno-economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air-breathing formic acid fuel cells, boasting a power density of 55 mW cm-2 and an exceptional thermal efficiency of 20.1 %.

6.
Angew Chem Int Ed Engl ; 62(19): e202217369, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916416

RESUMO

Electrochemical CO2 reduction reaction (ECO2 RR) with controlled product selectivity is realized on Ag-Cu bimetallic surface alloys, with high selectivity towards C2 hydrocarbons/alcohols (≈60 % faradaic efficiency, FE), C1 hydrocarbons/alcohols (≈41 % FE) and CO (≈74 % FE) achieved by tuning surface compositions and applied potentials. In situ spectral investigations and theoretical calculations reveal that surface-composition-dependent d-band center could tune *CO binding strengths, regulating the *CO subsequent reaction pathways and then the product selectivity. Further adjusting the applied potentials will alter the energy of participated electrons, which leads to controlled ECO2 RR selectivity towards desired products. A predominant region map, with an indicator proposed to evaluate the thermodynamic predominance of the *CO subsequent reactions, is then provided as a reliable theoretical guidance for the controllable ECO2 RR product selectivity over bimetallic alloys.

7.
J Am Chem Soc ; 144(49): 22759-22766, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453117

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) to produce high value-added hydrocarbons and oxygenates presents a sustainable and compelling approach toward a carbon-neutral society. However, uncontrollable migration of active sites during the electrochemical CO2RR limits its catalytic ability to simultaneously achieve high C2 selectivity and ultradurability. Here, we demonstrate that the generated interfacial CuAlO2 species can efficiently stabilize the highly active sites over the Cu-CuAlO2-Al2O3 catalyst under harsh electrochemical conditions without active sites regeneration for a long-term test. We show that this unique Cu-CuAlO2-Al2O3 catalyst exhibits ultradurable electrochemical CO2RR performance with an 85% C2 Faradaic efficiency for a 300 h test. Such a simple interfacial engineering design approach unveiled in this work would be adaptable to develop various ultradurable catalysts for industrial-scale electrochemical CO2RR.

8.
Chem Rev ; 120(21): 12175-12216, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32186373

RESUMO

Single-atom photocatalysts have shown their compelling potential and arguably become the most active research direction in photocatalysis due to their fascinating strengths in enhancing light-harvesting, charge transfer dynamics, and surface reactions of a photocatalytic system. While numerous comprehensions about the single-atom photocatalysts have recently been amassed, advanced characterization techniques and vital theoretical studies are strengthening our understanding on these fascinating materials, allowing us to forecast their working mechanisms and applications in photocatalysis. In this review, we begin by describing the general background and definition of the single-atom photocatalysts. A brief discussion of the metal-support interactions on the single-atom photocatalysts is then provided. Thereafter, the current available characterization techniques for single-atom photocatalysts are summarized. After having some fundamental understanding on the single-atom photocatalysts, their advantages and applications in photocatalysis are discussed. Finally, we end this review with a look into the remaining challenges and future perspectives of single-atom photocatalysts. We anticipate that this review will provide some inspiration for the future discovery of the single-atom photocatalysts, manifestly stimulating the development in this emerging research area.

9.
Nano Lett ; 21(1): 120-129, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320006

RESUMO

Energy-saving photodetectors are the key components in future photonic systems. Particularly, self-powered photoelectrochemical-type photodetectors (PEC-PDs), which depart completely from the classical solid-state junction device, have lately intrigued intensive interest to meet next-generation power-independent and environment-sensitive photodetection. Herein, we construct, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon. Importantly, with the proper surface platinum (Pt) decoration, a significant boost of photon responsivity by more than an order of magnitude was achieved in the newly built Pt/AlGaN nanoarchitectures, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source. Such high solar-blind photodetection originates from the unparalleled material quality, fast interfacial kinetics, as well as high carrier separation efficiency which suggests that embracement of defect-free wide-bandgap semiconductor nanostructures with appropriate surface decoration offers an unprecedented opportunity for designing future energy-efficient and large-scale optoelectronic systems on a silicon platform.

10.
J Am Chem Soc ; 143(1): 269-278, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373209

RESUMO

Photocatalysis provides an intriguing approach for the conversion of methane to multicarbon (C2+) compounds under mild conditions; however, with methyl radicals as the sole reaction intermediate, the current C2+ products are dominated by ethane, with a negligible selectivity toward ethylene, which, as a key chemical feedstock, possesses higher added value than ethane. Herein, we report a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst. On the basis of various in situ characterizations, it is revealed that the Pd-induced dehydrogenation capability of the catalyst holds the key to turning on the pathway. During the reaction, methane molecules are first dissociated into methoxy on the surface of ZnO under the assistance of Pd. Then these methoxy intermediates are further dehydrogenated and coupled with methyl radical into ethoxy, which can be subsequently converted into ethylene through dehydrogenation. As a result, the optimized ZnO-AuPd hybrid with atomically dispersed Pd sites in the Au lattice achieves a methane conversion of 536.0 µmol g-1 with a C2+ compound selectivity of 96.0% (39.7% C2H4 and 54.9% C2H6 in total produced C2+ compounds) after 8 h of light irradiation. This work provides fresh insight into the methane conversion pathway under mild conditions and highlights the significance of dehydrogenation for enhanced photocatalytic activity and unsaturated hydrocarbon product selectivity.

11.
Angew Chem Int Ed Engl ; 60(50): 26122-26127, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34596317

RESUMO

Production of multicarbon (C2+ ) liquid fuels is a challenging task for electrocatalytic CO2 reduction, mainly limited by the stabilization of reaction intermediates and their subsequent C-C couplings. In this work, we report a unique catalyst, the coordinatively unsaturated Cu sites on amorphous CuTi alloy (a-CuTi@Cu) toward electrocatalytic CO2 reduction to multicarbon (C2-4 ) liquid fuels. Remarkably, the electrocatalyst yields ethanol, acetone, and n-butanol as major products with a total C2-4 faradaic efficiency of about 49 % at -0.8 V vs. reversible hydrogen electrode (RHE), which can be maintained for at least 3 months. Theoretical simulations and in situ characterization reveals that subsurface Ti atoms can increase the electron density of surface Cu sites and enhance the adsorption of *CO intermediate, which in turn reduces the energy barriers required for *CO dimerization and trimerization.

12.
Angew Chem Int Ed Engl ; 60(29): 16085-16092, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33963658

RESUMO

To avoid the energy-consuming step of direct N≡N bond cleavage, photocatalytic N2 fixation undergoing the associative pathways has been developed for mild-condition operation. However, it is a fundamental yet challenging task to gain comprehensive understanding on how the associative pathways (i.e., alternating vs. distal) are influenced and altered by the fine structure of catalysts, which eventually holds the key to significantly promote the practical implementation. Herein, we introduce Fe dopants into TiO2 nanofibers to stabilize oxygen vacancies and simultaneously tune their local electronic structure. The combination of in situ characterizations with first-principles simulations reveals that the modulation of local electronic structure by Fe dopants turns the hydrogenation of N2 from associative alternating pathway to associative distal pathway. This work provides fresh hints for rationally controlling the reaction pathways toward efficient photocatalytic nitrogen fixation.

13.
Angew Chem Int Ed Engl ; 60(17): 9357-9361, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33565226

RESUMO

Photoelectrochemical (PEC) conversion of methane (CH4 ) has been extensively explored for the production of value-added chemicals, yet remains a great challenge in high selectivity toward C2+ products. Herein, we report the optimization of the reactivity of hydroxyl radicals (. OH) on WO3 via facet tuning to achieve efficient ethylene glycol production from PEC CH4 conversion. A combination of materials simulation and radicals trapping test provides insight into the reactivity of . OH on different facets of WO3 , showing the highest reactivity of surface-bound . OH on {010} facets. As such, the WO3 with the highest {010} facet ratio exhibits a superior PEC CH4 conversion efficiency, reaching an ethylene glycol production rate of 0.47 µmol cm-2 h-1 . Based on in situ characterization, the methanol, which could be attacked by reactive . OH to form hydroxymethyl radicals, is confirmed to be the main intermediate for the production of ethylene glycol. Our finding is expected to provide new insight for the design of active and selective catalysts toward PEC CH4 conversion.

14.
Angew Chem Int Ed Engl ; 60(23): 12742-12746, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33742485

RESUMO

Achieving a selective 2 e- or 4 e- oxygen reduction reaction (ORR) is critical but challenging. Herein, we report controlling ORR selectivity of Co porphyrins by tuning only steric effects. We designed Co porphyrin 1 with meso-phenyls each bearing a bulky ortho-amido group. Due to the resulted steric hinderance, 1 has four atropisomers with similar electronic structures but dissimilar steric effects. Isomers αßαß and αααα catalyze ORR with n=2.10 and 3.75 (n is the electron number transferred per O2 ), respectively, but ααßß and αααß show poor selectivity with n=2.89-3.10. Isomer αßαß catalyzes 2 e- ORR by preventing a bimolecular O2 activation path, while αααα improves 4 e- ORR selectivity by improving O2 binding at its pocket, a feature confirmed by spectroscopy methods, including O K-edge near-edge X-ray absorption fine structure. This work represents an unparalleled example to improve 2 e- and 4 e- ORR by tuning only steric effects without changing molecular and electronic structures.

15.
J Am Chem Soc ; 142(28): 12430-12439, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530616

RESUMO

Photocatalytic nitrogen fixation represents a green alternative to the conventional Haber-Bosch process in the conversion of nitrogen to ammonia. In this study, a series of Bi5O7Br nanostructures were synthesized via a facile, low-temperature thermal treatment procedure, and their photocatalytic activity toward nitrogen fixation was evaluated and compared. Spectroscopic measurements showed that the tubular Bi5O7Br sample prepared at 40 °C (Bi5O7Br-40) exhibited the highest electron-transfer rate among the series, producing a large number of O2.- radicals and oxygen vacancies under visible-light photoirradiation and reaching a rate of photocatalytic nitrogen fixation of 12.72 mM·g-1·h-1 after 30 min of photoirradiation. The reaction dynamics was also monitored by in situ infrared measurements with a synchrotron radiation light source, where the transient difference between signals in the dark and under photoirradiation was analyzed and the reaction pathway of nitrogen fixation was identified. This was further supported by results from density functional theory calculations. The reaction energy of nitrogen fixation was quantitatively estimated and compared by building oxygen-enriched and anoxic models, where the change in the oxygen vacancy concentration was found to play a critical role in determining the nitrogen fixation performance. Results from this study suggest that Bi5O7Br with rich oxygen vacancies can be used as a high-performance photocatalyst for nitrogen fixation.

16.
J Am Chem Soc ; 142(12): 5618-5626, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32130002

RESUMO

Harvesting solar energy for catalytic conversion of CO2 into valuable chemical fuels/feedstocks is an attractive yet challenging strategy to realize a sustainable carbon-cycle utilization. Homogeneous catalysts typically exhibit higher activity and selectivity as compared with heterogeneous counterparts, benefiting from their atomically dispersed catalytic sites and versatile coordination structures. However, it is still a "black box" how the coordination and electronic structures of catalysts dynamically evolve during the reaction, forming the bottleneck for understanding their reaction pathways. Herein, we demonstrate to track the mechanistic pathway of photocatalytic CO2 reduction using a terpyridine nickel(II) complex as a catalyst model. Integrated with a typical homogeneous photosensitizer, the catalytic system offers a high selectivity of 99% for CO2-to-CO conversion with turnover number and turnover frequency as high as 2.36 × 107 and 385.6 s-1, respectively. We employ operando and time-resolved X-ray absorption spectroscopy, in combination with other in situ spectroscopic techniques and theoretical computations, to track the intermediate species of Ni catalyst in the photocatalytic CO2 reduction reaction for the first time. Taken together with the charge dynamics resolved by optical transient absorption spectroscopy, the investigation elucidates the full mechanistic reaction pathway including some key factors that have been often overlooked. This work opens the "black box" for CO2 reduction in the system of homogeneous catalysts and provides key information for developing efficient catalysts toward artificial photosynthesis.

17.
Small ; 16(43): e2001782, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33015965

RESUMO

Single-atom (SA) catalysis bridging homogeneous and heterogeneous catalysis offers new opportunities for organic synthesis, but developing SA catalysts with high activity and stability is still a great challenge. Herein, a heterogeneous catalyst of Pd SAs anchored in 3D ordered macroporous ceria (Pd-SAs/3DOM-CeO2 ) is developed through a facile template-assisted pyrolysis method. The high specific surface area of 3DOM CeO2 facilitates the heavily anchoring of Pd SAs, while the introduction of Pd atoms induces the generation of surface oxygen vacancies and prevents the grain growth of CeO2 support. The Pd-SAs/3DOM-CeO2 catalyst exhibits excellent activity toward Suzuki coupling reactions for a broad scope of substrates under ambient conditions, and the Pd SAs can be stabilized in CeO2 in long-term catalytic cycles without leaching or aggregating. Theoretical calculations indicate that the CeO2 supported Pd SAs can remarkably reduce the energy barriers of both transmetalation and reductive elimination steps for Suzuki coupling reactions. The strong metal-support interaction contributes to modulating the electronic state and maintaining the stability of Pd SA sites. This work demonstrates an effective strategy to design and synthesize stable single-atom catalysts as well as sheds new light on the origin for enhanced catalysis based on the strong metal-support interactions.

18.
Angew Chem Int Ed Engl ; 59(15): 6224-6229, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922641

RESUMO

Single-atom catalysts are promising platforms for heterogeneous catalysis, especially for clean energy conversion, storage, and utilization. Although great efforts have been made to examine the bonding and oxidation state of single-atom catalysts before and/or after catalytic reactions, when information about dynamic evolution is not sufficient, the underlying mechanisms are often overlooked. Herein, we report the direct observation of the charge transfer and bond evolution of a single-atom Pt/C3 N4 catalyst in photocatalytic water splitting by synchronous illumination X-ray photoelectron spectroscopy. Specifically, under light excitation, we observed Pt-N bond cleavage to form a Pt0 species and the corresponding C=N bond reconstruction; these features could not be detected on the metallic platinum-decorated C3 N4 catalyst. As expected, H2 production activity (14.7 mmol h-1 g-1 ) was enhanced significantly with the single-atom Pt/C3 N4 catalyst as compared to metallic Pt-C3 N4 (0.74 mmol h-1 g-1 ).

19.
J Am Chem Soc ; 141(19): 7807-7814, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038309

RESUMO

Nitrogen fixation in a simulated natural environment (i.e., near ambient pressure, room temperature, pure water, and incident light) would provide a desirable approach to future nitrogen conversion. As the N≡N triple bond has a thermodynamically high cleavage energy, nitrogen reduction under such mild conditions typically undergoes associative alternating or distal pathways rather than following a dissociative mechanism. Here, we report that surface plasmon can supply sufficient energy to activate N2 through a dissociative mechanism in the presence of water and incident light, as evidenced by in situ synchrotron radiation-based infrared spectroscopy and near ambient pressure X-ray photoelectron spectroscopy. Theoretical simulation indicates that the electric field enhanced by surface plasmon, together with plasmonic hot electrons and interfacial hybridization, may play a critical role in N≡N dissociation. Specifically, AuRu core-antenna nanostructures with broadened light adsorption cross section and active sites achieve an ammonia production rate of 101.4 µmol g-1 h-1 without any sacrificial agent at room temperature and 2 atm pressure. This work highlights the significance of surface plasmon to activation of inert molecules, serving as a promising platform for developing novel catalytic systems.

20.
J Am Chem Soc ; 140(48): 16514-16520, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30407807

RESUMO

Development of visible-light photocatalytic materials is an ultimate goal for solar-driven CO2 conversion. Au nanoclusters (NCs) may potentially serve as components for harvesting visible light but can hardly perform solar-driven CO2 reduction due to the lack of catalytic sites. Herein, we report an effective strategy for turning Au nanoclusters catalytically active for visible-light CO2 reduction, in which metal cations (Fe2+, Co2+, Ni2+, and Cu2+) are grafted to the Au NCs using l-cysteine as a bridging ligand. The metal-S bonding bridge facilitates the electron transfer from Au NCs to metal cations so that the grafted metal cations can receive photoinduced electrons and work as catalytic sites for CO2 reduction. The varied d-band centers and binding energies with CO2 for different metal cations allow tuning electron transfer efficiency and CO2 activation energy. Furthermore, the photostability of Au NCs-based catalyst can be significantly enhanced through the encapsulation with metal-organic frameworks. This work opens a new door for the photocatalyst design based on metal clusters and sheds light on the surface engineering of metal clusters toward specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA