Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964598

RESUMO

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Software , Fluxo de Trabalho
2.
NMR Biomed ; 36(6): e4715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35187749

RESUMO

Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos
3.
Inorg Chem ; 61(42): 16650-16663, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36205705

RESUMO

Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.


Assuntos
Meios de Contraste , Prótons , Ligantes , Meios de Contraste/química , Estrutura Molecular , DEET , Cristalografia por Raios X , Piridinas/química , Amidas/química , Compostos Ferrosos/química , Oxigênio , Nitrogênio , Água
4.
MAGMA ; 35(1): 87-104, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032288

RESUMO

Cancer is one of the most devastating diseases that the world is currently facing, accounting for 10 million deaths in 2020 (WHO). In the last two decades, advanced medical imaging has played an ever more important role in the early detection of the disease, as it increases the chances of survival and the potential for full recovery. To date, dynamic glucose-enhanced (DGE) MRI using glucose-based chemical exchange saturation transfer (glucoCEST) has demonstrated the sensitivity to detect both D-glucose and glucose analogs, such as 3-oxy-methyl-D-glucose (3OMG) uptake in tumors. As one of the recent international efforts aiming at pushing the boundaries of translation of the DGE MRI technique into clinical practice, a multidisciplinary team of eight partners came together to form the "glucoCEST Imaging of Neoplastic Tumors (GLINT)" consortium, funded by the Horizon 2020 European Commission. This paper summarizes the progress made to date both by these groups and others in increasing our knowledge of the underlying mechanisms related to this technique as well as translating it into clinical practice.


Assuntos
Glucose , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
5.
J Digit Imaging ; 35(4): 860-875, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35304674

RESUMO

Molecular imaging generates large volumes of heterogeneous biomedical imagery with an impelling need of guidelines for handling image data. Although several successful solutions have been implemented for human epidemiologic studies, few and limited approaches have been proposed for animal population studies. Preclinical imaging research deals with a variety of machinery yielding tons of raw data but the current practices to store and distribute image data are inadequate. Therefore, standard tools for the analysis of large image datasets need to be established. In this paper, we present an extension of XNAT for Preclinical Imaging Centers (XNAT-PIC). XNAT is a worldwide used, open-source platform for securely hosting, sharing, and processing of clinical imaging studies. Despite its success, neither tools for importing large, multimodal preclinical image datasets nor pipelines for processing whole imaging studies are yet available in XNAT. In order to overcome these limitations, we have developed several tools to expand the XNAT core functionalities for supporting preclinical imaging facilities. Our aim is to streamline the management and exchange of image data within the preclinical imaging community, thereby enhancing the reproducibility of the results of image processing and promoting open science practices.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Animais , Diagnóstico por Imagem/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
6.
Br J Cancer ; 124(1): 207-216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257841

RESUMO

BACKGROUND: Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential. METHODS: Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach. RESULTS: The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44+CD24-), highlighting their propensity to migrate and invade, coinciding with the measurement obtained by in vitro assays. MRI-CEST pH imaging successfully discriminated the more aggressive 4T1 and TS/A tumours that displayed a more acidic pH. Moreover, the observed higher tumour acidity was significantly correlated with an increased number of lung metastases. CONCLUSIONS: The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.


Assuntos
Neoplasias da Mama/química , Neoplasias da Mama/patologia , Invasividade Neoplásica/patologia , Animais , Linhagem Celular Tumoral , Feminino , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C
7.
Magn Reson Med ; 86(2): 995-1007, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764575

RESUMO

PURPOSE: The aim of this study was to investigate two clinically approved plasma volume expanders (dextran 70 and voluven) as macromolecular MRI-chemical exchange saturation transfer (CEST) contrast agents to assess tumor vascular properties. METHODS: CEST contrast efficiency of both molecules (6% w/v) was measured in vitro at various irradiation saturation powers (1-6 µT for 5 s) and pH values (range, 5.5-7.9) and the exchange rate of hydroxyl protons was calculated. In vivo studies in a murine adenocarcinoma model (n = 4 mice for each contrast agent) upon i.v. injection provided CEST-derived perfusion tumor properties that were compared with those obtained with a gadolinium-based blood-pool agent (Gd-AAZTA-Madec). RESULTS: In vitro measurements showed a marked CEST contrast dependency to pH, with higher CEST contrast at lower pH values for both molecules. The measured prototropic exchange rates confirmed a base-catalyzed exchange rate that was faster for dextran 70 in comparison to voluven. Both molecules showed a similar CEST contrast increase (ΔST% > 3%) in the tumor tissue up to 30 min postinjection, with heterogeneous accumulation. In tumors receiving both CEST and T1 -weighted agents, a voxel-by-voxel analysis indicated moderate spatial correlation of perfusion properties between voluven/dextran 70 and Gd-AAZTA-Madec, suggesting different distribution patterns according to their molecular size. CONCLUSIONS: The obtained results showed that both voluven and dextran 70 can be exploited as MRI-CEST contrast agents for evaluating tumor enhancement properties. Their increased accumulation in tumors and prolonged contrast enhancement promote their use as blood-pool MRI-CEST agents to examine tumor vascularization.


Assuntos
Meios de Contraste , Neoplasias , Animais , Gadolínio , Imageamento por Ressonância Magnética , Camundongos , Neoplasias/diagnóstico por imagem , Substitutos do Plasma
8.
Magn Reson Med ; 85(6): 3479-3496, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33496986

RESUMO

PURPOSE: Chemical exchange saturation transfer MRI provides new approaches for investigating tumor microenvironment, including tumor acidosis that plays a key role in tumor progression and resistance to therapy. Following iopamidol injection, the detection of the contrast agent inside the tumor tissue allows measurements of tumor extracellular pH. However, accurate tumor pH quantifications are hampered by the low contrast efficiency of the CEST technique and by the low SNR of the acquired CEST images, hence in a reduced detectability of the injected agent. This work aims to investigate a novel denoising method for improving both tumor pH quantification and accuracy of CEST-MRI pH imaging. METHODS: An hybrid denoising approach was investigated for CEST-MRI pH imaging based on the combination of the nonlocal mean filter and the anisotropic diffusion tensor method. The denoising approach was tested in simulated and in vitro data and compared with previously reported methods for CEST imaging and with established denoising approaches. Finally, it was validated with in vivo data to improve the accuracy of tumor pH maps. RESULTS: The proposed method outperforms current denoising methods in CEST contrast quantification and detection of the administered contrast agent at several increasing noise levels with simulated data. In addition, it achieved a better pH quantification in in vitro data and demonstrated a marked improvement in contrast detection and a substantial improvement in tumor pH accuracy in in vivo data. CONCLUSION: The proposed approach effectively reduces the noise in CEST images and increases the sensitivity detection in CEST-MRI pH imaging.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Anisotropia , Humanos , Concentração de Íons de Hidrogênio , Iopamidol , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Microambiente Tumoral
9.
Magn Reson Med ; 85(3): 1335-1349, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33031591

RESUMO

PURPOSE: Chemical exchange saturation transfer MRI can provide accurate pH images, but the slow scan time (due to long saturation periods and multiple offsets sampling) reduce both the volume coverage and spatial resolution capability, hence the possibility to interrogate the heterogeneity in tumors and organs. To overcome these limitations, we propose a fast multislice CEST-MRI sequence with high pH accuracy and spatial resolution. METHODS: The sequence first uses a long saturation pulse to induce the steady-state CEST contrast and a second short saturation pulse repeated after each image acquisition to compensate for signal losses based on an uneven irradiation scheme combined with a single-shot rapid acquisition with refocusing echoes readout. Sequence sensitivity and accuracy in measuring pH was optimized by simulation and assessed by in vitro studies in pH-varying phantoms. In vivo validation was performed in two applications by acquiring multislice pH images covering the whole tumors and kidneys after iopamidol injection. RESULTS: Simulated and in vivo data showed comparable contrast efficiency and pH responsiveness by reducing saturation time. The experimental data from a homogeneous, pH-varying, iopamidol-containing phantom show that the sequence produced a uniform CEST contrast across slices and accurate values across slices in less than 10 minutes. In vivo measurements allowed us to quantify the 3D pH gradients of tumors and kidneys, with pH ranges comparable with the literature. CONCLUSION: The proposed fast multislice CEST-MRI sequence allows volumetric acquisitions with good pH sensitivity, accuracy, and spatial resolution for several in vivo pH imaging applications.


Assuntos
Iopamidol , Imageamento por Ressonância Magnética , Simulação por Computador , Concentração de Íons de Hidrogênio , Imagens de Fantasmas
10.
NMR Biomed ; 34(12): e4602, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34423470

RESUMO

D-Glucose and 3-O-Methyl-D-glucose (3OMG) have been shown to provide contrast in magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) images. However, a systematic comparison between these two molecules has yet to be performed. The current study deals with the assessment of the effect of pH, saturation power level (B1 ) and magnetic field strength (B0 ) on the MRI-CEST contrast with the aim of comparing the in vivo CEST contrast detectability of these two agents in the glucoCEST procedure. Phosphate-buffered solutions of D-Glucose or 3OMG (20 mM) were prepared at different pH values and Z-spectra were acquired at several B1 levels at 37°C. In vivo glucoCEST images were obtained at 3 and 7 T over a period of 30 min after injection of D-Glucose or 3OMG (at doses of 1.5 or 3 g/kg) in a murine melanoma tumor model (n = 3-5 mice for each molecule, dose and B0 field). A markedly different pH dependence of CEST response was observed in vitro for D-Glucose and 3OMG. The glucoCEST contrast enhancement in the tumor region following intravenous administration (at the 3 g/kg dose) was comparable for both molecules: 1%-2% at 3 T and 2%-3% at 7 T. The percentage change in saturation transfer that resulted was almost constant for 3OMG over the 30-min period, whereas a significant increase was detected for D-Glucose. Our results show similar CEST contrast efficiency but different temporal kinetics for the metabolizable and the nonmetabolizable glucose derivatives in a tumor murine model when administered at the same doses.


Assuntos
3-O-Metilglucose/química , Glucose/química , Imageamento por Ressonância Magnética/métodos , Melanoma Experimental/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Campos Magnéticos , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
Cancer Metastasis Rev ; 38(1-2): 25-49, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30762162

RESUMO

Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.


Assuntos
Acidose/diagnóstico por imagem , Acidose/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Acidose/patologia , Animais , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Neoplasias/patologia
12.
NMR Biomed ; 33(6): e4287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32153058

RESUMO

Several factors can lead to acute kidney injury, but damage following ischemia and reperfusion injuries is the main risk factor and usually develops into chronic disease. MRI has often been proposed as a method with which to assess renal function. It does so by measuring the renal perfusion of an injected Gd-based contrast agent. The use of pH-responsive agents as part of the CEST (chemical exchange saturation transfer)-MRI technique has recently shown that pH homeostasis is also an important indicator of kidney functionality. However, there is still a need for methods that can provide more than one type of information following the injection of a single contrast agent for the characterization of renal function. Herein we propose, for the first time, dynamic CEST acquisition following iopamidol injection to quantify renal function by assessing both perfusion and pH homeostasis. The aim of this study is to assess renal functionality in a murine unilateral ischemia-reperfusion injury model at two time points (3 and 7 days) after acute kidney injury. The renal-perfusion estimates measured with iopamidol were compared with those obtained with a gadolinium-based agent, via a dynamic contrast enhanced (DCE)-MRI approach, to validate the proposed method. Compared with the contralateral kidneys, the clamped ones showed a significant decrease in renal perfusion, as measured using the DCE-MRI approach, which is consistent with reduced filtration capability. Dynamic CEST-MRI findings provided similar results, indicating that the clamped kidneys displayed significantly reduced renal filtration that persisted up to 7 days after the damage. In addition, CEST-MRI pH imaging showed that the clamped kidneys displayed significantly increased pH values, reflecting the disturbance to pH homeostasis. Our results demonstrate that a single CEST-MRI contrast agent can provide multiple types of information related to renal function and can discern healthy kidneys from pathological ones by combining perfusion measurements with renal pH mapping.


Assuntos
Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética , Perfusão , Traumatismo por Reperfusão/diagnóstico por imagem , Doença Aguda , Animais , Meios de Contraste/química , Modelos Animais de Doenças , Gadolínio/química , Concentração de Íons de Hidrogênio , Modelos Lineares , Camundongos
14.
NMR Biomed ; 32(9): e4113, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313865

RESUMO

AIMS: To determine individual glucose hydroxyl exchange rates at physiological conditions and use this information for numerical optimization of glucoCEST/CESL preparation. To give guidelines for in vivo glucoCEST/CESL measurement parameters at clinical and ultra-high field strengths. METHODS: Five glucose solution samples at different pH values were measured at 14.1 T at various B1 power levels. Multi-B1 -Z-spectra Bloch-McConnell fits at physiological pH were further improved by the fitting of Z-spectra of five pH values simultaneously. The obtained exchange rates were used in a six-pool Bloch-McConnell simulation including a tissue-like water pool and semi-solid MT pool with different CEST and CESL presaturation pulse trains. In vivo glucose injection experiments were performed in a tumor mouse model at 7 T. RESULTS AND DISCUSSION: Glucose Z-spectra could be fitted with four exchanging pools at 0.66, 1.28, 2.08 and 2.88 ppm. Corresponding hydroxyl exchange rates could be determined at pH = 7.2, T = 37°C and 1X PBS. Simulation of saturation transfer for this glucose system in a gray matter-like and a tumor-like system revealed optimal pulses at different field strengths of 9.4, 7 and 3 T. Different existing sequences and approaches are simulated and discussed. The optima found could be experimentally verified in an animal model at 7 T. CONCLUSION: For the determined fast exchange regime, presaturation pulses in the spin-lock regime (long recover time, short yet strong saturation) were found to be optimal. This study gives an estimation for optimization of the glucoCEST signal in vivo on the basis of glucose exchange rate at physiological conditions.


Assuntos
Glucose/análise , Radical Hidroxila/análise , Imageamento por Ressonância Magnética , Animais , Simulação por Computador , Feminino , Glucose/química , Xenoenxertos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C
15.
NMR Biomed ; 30(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370530

RESUMO

Acute kidney injury (AKI) in mice caused by sustained ischemia followed by reperfusion is associated with acute tubular necrosis and renal dysfunctional blood flow. Although the principal role of the kidney is the maintenance of acid-base balance, current imaging approaches are unable to assess this important parameter, and clinical biomarkers are not robust enough in evaluating the severity of kidney damage. Therefore, novel noninvasive imaging approaches are needed to assess the acid-base homeostasis in vivo. This study investigates the usefulness of MRI-chemical exchange saturation transfer (CEST) pH imaging (through iopamidol injection) in characterizing moderate and severe AKI in mice following unilateral ischemia reperfusion injury. Moderate (20 min) and severe (40 min) ischemia were induced in Balb/C mice, which were imaged at several time points thereafter (Days 0, 1, 2, 7). A significant increase of renal pH values was observed as early as one day after the ischemia reperfusion damage for both moderate and severe ischemia. MRI-CEST pH imaging distinguished the evolution of moderate from severe AKI. A recovery of normal renal pH values was observed for moderate AKI, whereas a persisting renal pH increase was observed for severe AKI on Day 7. Renal filtration fraction was significantly lower for clamped kidneys (0.54-0.57) in comparison to contralateral kidneys (0.84-0.86) following impairment of glomerular filtration. The severe AKI group showed a reduced filtration fraction even after 7 days (0.38 for the clamped kidneys). Notably, renal pH values were significantly correlated with the histopathological score. In conclusion, MRI-CEST pH mapping is a valid tool for the noninvasive evaluation of both acid-base balance and renal filtration in patients with ischemia reperfusion injury.


Assuntos
Desequilíbrio Ácido-Base/diagnóstico por imagem , Injúria Renal Aguda/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Rim/química , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Homeostase , Interpretação de Imagem Assistida por Computador/métodos , Testes de Função Renal/métodos , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Prótons por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Eur Radiol ; 27(5): 2170-2179, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27572810

RESUMO

OBJECTIVES: X-ray iodinated contrast media have been shown to generate contrast in MR images when used with the chemical exchange saturation transfer (CEST) approach. The aim of this study is to compare contrast enhancement (CE) capabilities and perfusion estimates between radiographic molecules and a Gd-based contrast agent in two tumour murine models with different vascularization patterns. METHODS: MRI-CEST and MRI-CE T1w images were acquired in murine TS/A and 4 T1 breast tumours upon sequential i.v. injection of iodinated contrast media (iodixanol, iohexol, and iopamidol) and of gadoteridol. The signal enhancements observed in the two acquisition modalities were evaluated using Pearson's correlation, and the correspondence in the spatial distribution was assessed by a voxelwise comparison. RESULTS: A significant, positive correlation was observed between iodinated contrast media and gadoteridol for tumour contrast enhancement and perfusion values for both tumour models (r = 0.51-0.62). High spatial correlations were observed in perfusion maps between iodinated molecules and gadoteridol (r = 0.68-0.86). Tumour parametric maps derived by iodinated contrast media and gadoteridol showed high spatial similarities. CONCLUSIONS: A good to strong spatial correlation between tumour perfusion parameters derived from MRI-CEST and MRI-CE modalities indicates that the two procedures provide similar information. KEY POINTS: • Gd-based agents are the standard of reference for contrast-enhanced MRI. • Iodinated contrast media provides MRI-CEST contrast enhancement in animal tumour models. • Contrast enhancements were positively correlated between iodinated agents and gadoteridol. • Tumour perfusion map showed similar spatial distribution between iodinated agents and gadoteridol. • MRI-CEST with iodinated agents provide similar information to gadoteridol.


Assuntos
Neoplasias Mamárias Experimentais/irrigação sanguínea , Neovascularização Patológica/diagnóstico por imagem , Animais , Meios de Contraste/química , Feminino , Gadolínio , Compostos Heterocíclicos , Aumento da Imagem/métodos , Iohexol , Iopamidol , Imageamento por Ressonância Magnética/métodos , Masculino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Compostos Organometálicos , Perfusão , Radiografia , Reprodutibilidade dos Testes , Ácidos Tri-Iodobenzoicos
17.
Gastric Cancer ; 20(4): 629-639, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27995483

RESUMO

BACKGROUND: Most metastatic gastrointestinal stromal tumors (GISTs) develop resistance to the first-line imatinib treatment. Recently, increased vessel density and angiogenic markers were reported in GISTs with a poor prognosis, suggesting that angiogenesis is implicated in GIST tumor progression and resistance. The purpose of this study was to investigate the relationship between tumor vasculature and imatinib resistance in different GIST mouse models using a noninvasive magnetic resonance imaging (MRI) functional approach. METHODS: Immunodeficient mice (n = 8 for each cell line) were grafted with imatinib-sensitive (GIST882 and GIST-T1) and imatinib-resistant (GIST430) human cell lines. Dynamic contrast-enhanced MRI (DCE-MRI) was performed on GIST xenografts to quantify tumor vessel permeability (K trans) and vascular volume fraction (v p). Microvessel density (MVD), permeability (mean dextran density, MDD), and angiogenic markers were evaluated by immunofluorescence and western blot assays. RESULTS: Dynamic contrast-enhanced magnetic resonance imaging showed significantly increased vessel density (P < 0.0001) and permeability (P = 0.0002) in imatinib-resistant tumors compared to imatinib-sensitive ones. Strong positive correlations were observed between MRI estimates, K trans and v p, and their related ex vivo values, MVD (r = 0.78 for K trans and r = 0.82 for v p) and MDD (r = 0.77 for K trans and r = 0.94 for v p). In addition, higher expression of vascular endothelial growth factor receptors (VEGFR2 and VEFGR3) was seen in GIST430. CONCLUSIONS: Dynamic contrast-enhanced magnetic resonance imaging highlighted marked differences in tumor vasculature and microenvironment properties between imatinib-resistant and imatinib-sensitive GISTs, as also confirmed by ex vivo assays. These results provide new insights into the role that DCE-MRI could play in GIST characterization and response to GIST treatment. Validation studies are needed to confirm these findings.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/patologia , Neovascularização Patológica/diagnóstico por imagem , Animais , Antineoplásicos , Linhagem Celular Tumoral , Meios de Contraste , Xenoenxertos , Humanos , Mesilato de Imatinib , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos
18.
Int J Mol Sci ; 18(8)2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28783106

RESUMO

Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.


Assuntos
Meios de Contraste , Diagnóstico por Imagem , Melaninas/metabolismo , Imagem Molecular , Técnicas Fotoacústicas , Nanomedicina Teranóstica , Animais , Diagnóstico por Imagem/métodos , Humanos , Imagem Molecular/métodos , Sondas Moleculares , Imagem Multimodal/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Nanomedicina Teranóstica/métodos
19.
Int J Cancer ; 139(2): 404-13, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26941084

RESUMO

Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans) = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Meios de Contraste , Aumento da Imagem , Imageamento por Ressonância Magnética , Neovascularização Patológica/diagnóstico por imagem , Animais , Mama/patologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Humanos , Hiperplasia , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Transgênicos
20.
NMR Biomed ; 28(5): 555-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25807919

RESUMO

Chemical exchange saturation transfer (CEST) MRI holds great promise for the imaging of pH. However, routine CEST measurement varies not only with the pH-dependent chemical exchange rate, but also with CEST agent concentration, providing pH-weighted information. Conventional ratiometric CEST imaging normalizes the confounding concentration factor by analyzing the relative CEST effect from different exchangeable groups, requiring CEST agents with multiple chemically distinguishable labile proton sites. Recently, a radiofrequency (RF) power-based ratiometric CEST MRI approach has been developed for concentration-independent pH MRI using CEST agents with a single exchangeable group. To facilitate quantification and optimization of the new ratiometric analysis, we quantified the RF power-based ratiometric CEST ratio (rCESTR) and derived its signal-to-noise and contrast-to-noise ratios. Using creatine as a representative CEST agent containing a single exchangeable site, our study demonstrated that optimized RF power-based ratiometric analysis provides good pH sensitivity. We showed that rCESTR follows a base-catalyzed exchange relationship with pH independent of creatine concentration. The pH accuracy of RF power-based ratiometric MRI was within 0.15-0.20 pH units. Furthermore, the absolute exchange rate can be obtained from the proposed ratiometric analysis. To summarize, RF power-based ratiometric CEST analysis provides concentration-independent pH-sensitive imaging and complements conventional multiple labile proton group-based ratiometric CEST analysis.


Assuntos
Meios de Contraste/química , Creatina/química , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Modelos Químicos , Imagem Molecular/métodos , Simulação por Computador , Creatina/análise , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Modelos Biológicos , Imagens de Fantasmas , Prótons , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA