Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124739, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959692

RESUMO

Chlorine is a common disinfectant used in water treatment. However, its reaction with organic matter can lead to the formation of harmful byproducts, such as trihalomethanes (THMs), which are potentially carcinogenic. To address this issue, the aim of this work was to enhance a colorimetric method capable of quantifying THMs in drinking water through UV/Vis Spectrophotometry, using cost-effective equipment, and validate this methodology for the first time according to established validation protocols. The method's innovation involved replacing the solvent pentane with the more common hexane, along with adjusting the heating ramp, elucidating the mechanisms involved in the process. This method involves the reaction between THMs, pyridine, and NaOH to produce a colored compound, which is then monitored through molecular absorption spectroscopy in the visible region. The method was thoroughly validated, achieving a limit of detection of 13.41 µg L-1 and a limit of quantification of 40.65 µg L-1. Recovery assays ranged from 86.1 % to 90.7 %, demonstrating high accuracy. The quality of the linear fit for the analytical curve exceeded R2 > 0.98. The method was applied to real samples, revealing concentrations ranging from 13.58 to 55.46 µg L-1, all way below the legal limit in Brazil (Maximum Contaminant Levels (MCL) = 100 µg L-1). This cost-effective and straightforward method is suitable for integration into water treatment plant laboratories.

2.
RSC Adv ; 14(27): 19459-19471, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887643

RESUMO

This study explores the stabilization by niobic acid, of Pt, Ni, Pd, and Au nanoparticles (NPs) for the efficient microheterogeneous catalysis of NaBH4 hydrolysis for hydrogen production. Niobic acid is the most widely studied Nb2O5 polymorph, and it is employed here for the first time for this key reaction relevant to green energy. Structural insights from XRD, Raman, and FTIR spectroscopies, combined with hydrogen production data, reveal the role of niobic acid's Brønsted acidity in its catalytic activity. The supported NPs showed significantly higher efficiency than the non-supported counterparts regarding turnover frequency, average hydrogen production rate, and cost. Among the tested NPs, PtNPs and NiNPs demonstrate the most favorable results. The data imply mechanism changes during the reaction, and the kinetic isotope assay indicates a primary isotope effect. Reusability assays demonstrate consistent yields over five cycles for PtNPs, although catalytic efficiency decreases, likely due to the formation of reaction byproducts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA