Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 27(1): e13060, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34013595

RESUMO

The epigenetic enzyme G9a is a histone methyltransferase that dimethylates lysine 9 on histone H3 (H3K9me2), and in the adult nucleus accumbens (NAc), G9a regulates multiple behaviors associated with substance use disorder. We show here that chronic intermittent ethanol (CIE) exposure in male mice reduced both G9a and H3K9me2 levels in the adult NAc, but not dorsal striatum. Viral-mediated reduction of G9a in the NAc had no effects on baseline volitional ethanol drinking or escalated alcohol drinking produced by CIE exposure; however, NAc G9a was required for stress-regulated changes in ethanol drinking, including potentiated alcohol drinking produced by activation of the kappa-opioid receptor. In addition, we observed that chronic systemic administration of a G9a inhibitor, UNC0642, also blocked stress-potentiated alcohol drinking. Together, our findings suggest that chronic alcohol use, similar to other abused substances, produces a NAc-selective reduction in G9a levels that serves to limit stress-regulated alcohol drinking. Moreover, our findings suggest that pharmacological inhibition of G9a might provide a novel therapeutic approach to treat stress-induced alcohol drinking, which is a major trigger of relapse in individuals suffering from AUD.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Histona Metiltransferases/metabolismo , Quinazolinas/metabolismo , Estresse Psicológico/metabolismo , Animais , Epigênese Genética , Etanol , Histonas/metabolismo , Masculino , Camundongos , Núcleo Accumbens/metabolismo
2.
Addict Biol ; 25(1): e12698, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468275

RESUMO

Biological differences between males and females likely influence responses to alcohol and the propensity to engage in excessive drinking. In both humans and rodents, females escalate alcohol use and develop addiction-like behaviors faster than males, while males exhibit more severe withdrawal symptoms during abstinence. The mechanisms underlying these differences are not yet known but may reflect fundamental differences in the ethanol sensitivity of neurons in reward and control areas of the brain. To address this question, we recorded current-evoked spiking of lateral orbitofrontal cortex (lOFC) neurons in male and female C57BL/6J mice following acute and chronic exposure to ethanol. Ethanol (11-66 mM) reduced firing of lOFC neurons but produced less inhibition in neurons from female mice. As previously reported for male mice, the glycine receptor blocker strychnine blocked ethanol inhibition of spiking of lOFC neurons from female mice and prevented the ethanol-induced increase in tonic current. Following chronic intermittent ethanol (CIE) exposure, current-evoked spiking of lOFC neurons was significantly enhanced with a greater effect observed in males. After CIE treatment, acute ethanol had no effect on spiking in neurons from male mice, while it produced a slight but significant decrease in firing in females. Finally, like male mice, the inhibitory effect of the glycine transport inhibitor sarcosine was blunted in CIE-exposed female mice. Together, these results suggest that while lOFC neurons in male and female mice are similarly affected by ethanol, there are significant differences in sensitivity that may contribute to differences in alcohol actions between males and females.


Assuntos
Alcoolismo/fisiopatologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/fisiopatologia , Fatores Sexuais , Transmissão Sináptica/efeitos dos fármacos
3.
Addict Biol ; 25(6): e12804, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31288295

RESUMO

Alcohol dependence promotes neuroadaptations in numerous brain areas, leading to escalated drinking and enhanced relapse vulnerability. We previously developed a mouse model of ethanol dependence and relapse drinking in which repeated cycles of chronic intermittent ethanol (CIE) vapor exposure drive a significant escalation of voluntary ethanol drinking. In the current study, we used this model to evaluate changes in neuronal activity (as indexed by c-Fos expression) throughout acute and protracted withdrawal from CIE (combined with or without a history of ethanol drinking). We analyzed c-Fos protein expression in 29 brain regions in mice sacrificed 2, 10, 26, and 74 hours or 7 days after withdrawal from 5 cycles of CIE. Results revealed dynamic time- and brain region-dependent changes in c-Fos activity over the time course of withdrawal from CIE exposure, as compared with nondependent air-exposed control mice, beginning with markedly low expression levels upon removal from the ethanol vapor chambers (2 hours), reflecting intoxication. c-Fos expression was enhanced during acute CIE withdrawal (10 and 26 hours), followed by widespread reductions at the beginning of protracted withdrawal (74 hours) in several brain areas. Persistent reductions in c-Fos expression were observed during prolonged withdrawal (7 days) in prelimbic cortex, nucleus accumbens shell, dorsomedial striatum, paraventricular nucleus of thalamus, and ventral subiculum. A history of ethanol drinking altered acute CIE withdrawal effects and caused widespread reductions in c-Fos that persisted during extended abstinence even without CIE exposure. These data indicate that ethanol dependence and relapse drinking drive long-lasting neuroadaptations in several brain regions.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Corpo Estriado/metabolismo , Etanol , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Pirazóis , Recidiva
5.
Artigo em Inglês | MEDLINE | ID: mdl-26625893

RESUMO

BACKGROUND: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. METHODS: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. RESULTS: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. CONCLUSIONS: These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Comportamento Animal , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Etanol , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Transmissão Sináptica , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Consumo de Bebidas Alcoólicas/psicologia , Transtornos do Sistema Nervoso Induzidos por Álcool/fisiopatologia , Transtornos do Sistema Nervoso Induzidos por Álcool/psicologia , Analgésicos Opioides/farmacologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Compulsivo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Síndrome de Abstinência a Substâncias/psicologia , Transmissão Sináptica/efeitos dos fármacos
6.
J Neurosci ; 34(10): 3706-18, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24599469

RESUMO

Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.


Assuntos
Cognição/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Etanol/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D4/agonistas , Animais , Cognição/fisiologia , Condicionamento Operante/fisiologia , Masculino , Estimulação Luminosa/métodos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Distribuição Aleatória , Ratos , Ratos Long-Evans , Receptores de Dopamina D2/fisiologia , Receptores de Dopamina D4/fisiologia
7.
Addict Biol ; 20(1): 38-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215262

RESUMO

Neuroinflammatory signaling pathways in the central nervous system are of current interest as potential pharmacotherapy targets for alcohol dependence. In this study, we examined the ability of ibudilast, a non-selective phosphodiesterase inhibitor, to reduce alcohol drinking and relapse in alcohol-preferring P rats, high-alcohol drinking HAD1 rats, and in mice made dependent on alcohol through cycles of alcohol vapor exposure. When administered twice daily, ibudilast reduced alcohol drinking in rats by approximately 50% and reduced drinking by alcohol-dependent mice at doses which had no effect in non-dependent mice. These findings support the viability of ibudilast as a possible treatment for alcohol dependence.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Comportamento Animal/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Piridinas/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Ratos
8.
Alcohol Clin Exp Res ; 38(10): 2561-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25293837

RESUMO

BACKGROUND: The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α-THP levels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in male C57BL/6J mice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α-THP levels have not been examined. Given that CIE exposure changes subsequent voluntary EtOH drinking in a time-dependent fashion following repeated cycles of EtOH exposure, we conducted a time-course analysis of CIE effects on 3α,5α-THP levels in specific brain regions known to influence drinking behavior. METHODS: Adult male C57BL/6J mice were exposed to 4 cycles of CIE to induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free-floating brain sections (40 µm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α-THP. RESULTS: Withdrawal from CIE exposure produced time-dependent and region-specific effects on immunohistochemical detection of 3α,5α-THP levels across cortical and limbic brain regions. A transient reduction in 3α,5α-THP immunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal from CIE (-31.4 ± 9.3%). Decreases in 3α,5α-THP immunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (-25.0 ± 9.3%), nucleus accumbens core (-29.9 ± 6.6%), and dorsolateral striatum (-18.5 ± 6.0%), while an increase was observed in the CA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α-THP immunoreactivity were observed at both time points in the lateral amygdala (8 hours -28.3 ± 12.8%; 72 hours -27.5 ± 12.4%) and in the ventral tegmental area (8 hours -26.5 ± 9.9%; 72 hours -31.6 ± 13.8%). CONCLUSIONS: These data suggest that specific neuroadaptations in 3α,5α-THP levels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed after CIE exposure.


Assuntos
Núcleo Central da Amígdala/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Pregnanolona/metabolismo , Suspensão de Tratamento , Alcoolismo/fisiopatologia , Animais , Ansiedade/fisiopatologia , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Estresse Psicológico/fisiopatologia , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38340255

RESUMO

The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.

10.
Alcohol Clin Exp Res ; 37(6): 961-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23298188

RESUMO

BACKGROUND: Increasing evidence shows that excessive alcohol consumption during adolescence increases vulnerability to alcohol use disorders in adulthood. The aim of this study was to examine differences between adolescent and adult C57BL/6J mice in drinking behavior and blood ethanol (EtOH) concentrations (BECs) after chronic EtOH exposure and withdrawal. METHODS: Male adolescent (PND = 28 to 30) and adult (PND = 70) C57BL/6J mice were allowed to consume EtOH in a 2-bottle choice paradigm (15% EtOH vs. water) for 3 weeks (Baseline drinking, Test 1, and Test 2), which were interspersed with 2 cycles (Cycles I and II) of chronic EtOH vapor or air inhalation (16 hours) and withdrawal (8 hours). BECs were determined during both cycles. RESULTS: Chronic EtOH exposure led to increased EtOH intake during Test 1 and Test 2 in both adolescent and adult mice compared with air-exposed controls, and no differences between age groups were observed. During Cycle I adult mice showed higher BECs compared with adolescents. During Cycle II, BECs were lower in adult mice as compared to Cycle I, and BECs in adolescent mice did not change between the 2 cycles. CONCLUSIONS: Chronic EtOH exposure followed by withdrawal periods increases EtOH consumption similarly in both adolescent and adult mice, despite differences in BECs.


Assuntos
Consumo de Bebidas Alcoólicas , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Fatores Etários , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Biol Psychiatry ; 94(3): 215-225, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822933

RESUMO

BACKGROUND: There is high comorbidity of posttraumatic stress disorder (PTSD) and alcohol use disorder with few effective treatment options. Animal models of PTSD have shown increases in alcohol drinking, but effects of stress history on subsequent vulnerability to alcohol relapse have not been examined. Here we present a mouse model of PTSD involving chronic multimodal stress exposure that resulted in long-lasting sensitization to stress-induced alcohol relapse, and this sensitized stress response was blocked by oxytocin (OT) administration. METHODS: Male and female mice trained to self-administer alcohol were exposed to predator odor (TMT) + yohimbine over 5 consecutive days or left undisturbed. After reestablishing stable alcohol responding/intake, mice were tested under extinction conditions, and then all mice were exposed to TMT or context cues previously associated with TMT before a reinstatement test session. Separate studies examined messenger RNA expression of Oxt and Oxtr in hypothalamus following chronic stress exposure. A final study examined the effects of systemic administration of OT on stress-induced alcohol relapse in mice with and without a history of chronic stress experience. RESULTS: Chronic stress exposure produced long-lasting sensitization to subsequent stress-induced alcohol relapse that also generalized to stress-related context cues and transcriptional changes in hypothalamic OT system. OT injected before the reinstatement test session completely blocked the sensitized stress-induced alcohol relapse effect. CONCLUSIONS: Collectively, these results provide support for the therapeutic potential of OT, along with highlighting the value of utilizing this model in evaluating other pharmacological interventions for treatment of PTSD/alcohol use disorder comorbidity.


Assuntos
Alcoolismo , Transtornos de Estresse Pós-Traumáticos , Masculino , Camundongos , Feminino , Animais , Alcoolismo/tratamento farmacológico , Ocitocina , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/genética , Etanol , Consumo de Bebidas Alcoólicas , Comorbidade
12.
Alcohol ; 106: 44-54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36328184

RESUMO

Examining neural circuits underlying persistent, heavy drinking provides insight into the neurobiological mechanisms driving alcohol use disorder. Facilitated by its connectivity with other parts of the brain such as the nucleus accumbens (NAc), the ventral hippocampus (vHC) supports many behaviors, including those related to reward seeking and addiction. These studies used a well-established mouse model of alcohol (ethanol) dependence. After surgery to infuse DREADD-expressing viruses (hM4Di, hM3Dq, or mCherry-only) into the vHC and position guide cannula above the NAc, male C57BL/6J mice were treated in the CIE drinking model that involved repeated cycles of chronic intermittent alcohol (CIE) vapor or air (CTL) exposure alternating with weekly test drinking cycles in which mice were offered alcohol (15% v/v) 2 h/day. Additionally, smaller groups of mice were evaluated for either cFos expression or glutamate release using microdialysis procedures. In CIE mice expressing inhibitory (hM4Di) DREADDs in the vHC, drinking increased as expected, but CNO (3 mg/kg intraperitoneally [i.p.]) given 30 min before testing did not alter alcohol intake. However, in CTL mice expressing hM4Di, CNO significantly increased alcohol drinking (∼30%; p < 0.05) to levels similar to the CIE mice. The vHC-NAc pathway was targeted by infusing CNO into the NAc (3 or 10 µM/side) 30 min before testing. CNO activation of the pathway in mice expressing excitatory (hM3Dq) DREADDs selectively reduced consumption in CIE mice back to CTL levels (∼35-45%; p < 0.05) without affecting CTL alcohol intake. Lastly, activating the vHC-NAc pathway increased cFos expression and evoked significant glutamate release from the vHC terminals in the NAc. These data indicate that reduced activity of the vHC increases alcohol consumption and that targeted, increased activity of the vHC-NAc pathway attenuates excessive drinking associated with alcohol dependence. Thus, these findings indicate that the vHC and its glutamatergic projections to the NAc are involved in excessive alcohol drinking.


Assuntos
Alcoolismo , Camundongos , Masculino , Animais , Alcoolismo/metabolismo , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/metabolismo , Hipocampo , Etanol , Núcleo Accumbens/metabolismo , Ácido Glutâmico/metabolismo
13.
Neuropharmacology ; 228: 109463, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792030

RESUMO

Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.


Assuntos
Alcoolismo , Complexo Nuclear Basolateral da Amígdala , Masculino , Feminino , Camundongos , Animais , Etanol , Córtex Pré-Frontal , Neurônios
14.
Cir Esp (Engl Ed) ; 101(1): 51-54, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35905869

RESUMO

Minimally invasive anatomical sublobar resections have gained relevance in recent years mainly due to advances in imaging techniques, screening programs and the increase in second neoplasms. Accurate identification of the segmental or subsegmental bronchus is vital to guarantee optimal results in segmentectomies and subsegmentectomies. Given the complexity and the possibility of anatomical variations, several authors have published different methods to identify the target bronchus. However, these methods have certain limitations. This article describes a new rapid and effective technique, with a low risk of complications and without additional cost, for the identification of segmental bronchi in minimally invasive segmentectomies.


Assuntos
Pneumonectomia , Procedimentos Cirúrgicos Robóticos , Humanos , Pneumonectomia/métodos , Mastectomia Segmentar , Fluorescência , Brônquios/diagnóstico por imagem , Brônquios/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos
15.
Cir Esp (Engl Ed) ; 101(1): 43-50, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35787477

RESUMO

INTRODUCTION: The objective of this study is to create a predictive model of prolonged postoperative length of stay (PLOS) in patients undergoing anatomic lung resection, to validate it in an external series and to evaluate the influence of PLOS on readmission and 90-day mortality. METHODS: All patients registered in the GEVATS database discharged after the intervention were included. We define PLOS as the postoperative stay in days above the 75th percentile of stay for all patients in the series. A univariate and multivariate analysis was performed using logistic regression and the model was validated in an external cohort. The possible association between PLOS and readmission and mortality at 90 days was analyzed. RESULTS: 3473 patients were included in the study. The median postoperative stay was 5 days (IQR: 4-7). 815 patients had PLOS (≥8 days), of which 79.9% had postoperative complications. The final model included as variables: age, BMI, male sex, ppoFEV1%, ppoDLCO% and thoracotomy; the AUC in the referral series was 0.684 (95% CI: 0.661-0.706) and in the validation series was 0.73 (95% CI: 0.681-0.78). A significant association was found between PLOS and readmission (p < .000) and 90-day mortality (p < .000). CONCLUSIONS: The variables age, BMI, male sex, ppoFEV1%, ppoDLCO% and thoracotomy affect PLOS. PLOS is associated with an increased risk of readmission and 90-day mortality. 20% of PLOS are not related to the occurrence of postoperative complications.


Assuntos
Complicações Pós-Operatórias , Humanos , Masculino , Fatores de Risco , Tempo de Internação , Estudos Retrospectivos , Modelos Logísticos , Complicações Pós-Operatórias/etiologia
16.
Alcohol ; 109: 23-33, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36709008

RESUMO

Alcohol use disorder (AUD) is a chronic, relapsing disorder characterized by an escalation of drinking and the emergence of negative affective states over time. Within this framework, alcohol may be used in excessive amounts to alleviate withdrawal-related symptoms, such as hyperalgesia. Future effective therapeutics for AUD may need to exhibit the ability to reduce drinking as well as to alleviate co-morbid conditions such as pain, and to take mechanistic sex differences into consideration. Agmatine is an endogenous neuromodulator that has been previously implicated in the regulation of reward and pain processing. In the current set of studies, we examined the ability of agmatine to reduce escalated ethanol drinking in complementary models of AUD where adult male and female mice and rats were made dependent via chronic, intermittent ethanol vapor exposure (CIE). We also examined the ability of agmatine to modify thermal and mechanical sensitivity in alcohol-dependent male and female rats. Agmatine reduced alcohol drinking in a dose-dependent fashion, with somewhat greater selectivity in alcohol-dependent female mice (versus non-dependent female mice), but equivalent efficacy across male mice and both groups of male and female rats. In mice and female rats, this efficacy did not extend to sucrose drinking, indicating some selectivity for ethanol reinforcement. Female rats made dependent on alcohol demonstrated significant hyperalgesia symptoms, and agmatine produced dose-dependent antinociceptive effects across both sexes. While additional mechanistic studies into agmatine are necessary, these findings support the broad-based efficacy of agmatine to treat co-morbid excessive drinking and pain symptoms in the context of AUD.


Assuntos
Agmatina , Alcoolismo , Síndrome de Abstinência a Substâncias , Feminino , Ratos , Masculino , Camundongos , Animais , Alcoolismo/tratamento farmacológico , Alcoolismo/psicologia , Agmatina/farmacologia , Agmatina/uso terapêutico , Roedores , Hiperalgesia/tratamento farmacológico , Consumo de Bebidas Alcoólicas/psicologia , Etanol/uso terapêutico , Dor , Analgésicos/farmacologia , Analgésicos/uso terapêutico
17.
Biol Psychiatry ; 94(5): 393-404, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736419

RESUMO

BACKGROUND: High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations. METHODS: We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior. RESULTS: During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking. CONCLUSIONS: Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Consumo de Bebidas Alcoólicas , Alcoolismo/metabolismo , Encéfalo/metabolismo , Etanol , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
18.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656645

RESUMO

Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.


Assuntos
Alcoolismo , Inibidores da Fosfodiesterase 4 , Psoríase , Humanos , Camundongos , Animais , Talidomida/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Psoríase/tratamento farmacológico , Etanol , Consumo de Bebidas Alcoólicas/genética
19.
Alcohol Clin Exp Res ; 36(7): 1180-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22309159

RESUMO

BACKGROUND: Repeated cycles of chronic intermittent ethanol (CIE) exposure lead to increased voluntary ethanol (EtOH) intake in C57BL/6J mice. This study evaluates the development of tolerance to EtOH's aversive effects in CIE exposure. METHODS: Adult male C57BL/6J mice were trained to drink 15% EtOH (vs. water) in a limited access procedure and then exposed to CIE (EtOH mice) or air (control [CTL] mice) for 5 cycles alternating with weekly access to EtOH drinking. Following the 4th CIE cycle, the aversive effects of EtOH were evaluated using a conditioned taste aversion (CTA) paradigm with 1% saccharin as the conditioned stimulus. Several doses of EtOH (0, 1, 2, and 3 g/kg) and LiCl (0.4 M, 0.02 ml/g) served as unconditioned stimuli. Finally, mice underwent a 5th CIE cycle to measure blood and brain concentrations following a 2 g/kg EtOH dose. RESULTS: CIE exposure increased EtOH drinking in EtOH mice while drinking in CTL mice remained stable. The lowest EtOH dose (1 g/kg) did not induce CTA in either group, but the highest dose (3 g/kg) produced CTA in both groups (49% reduction for CTL vs. 25% reduction for EtOH) although the group differences were not statistically significant. However, the 2 g/kg EtOH dose induced a significant aversion in CTL mice (27% reduction) but not in EtOH mice (20% increase), indicating tolerance to EtOH's aversive effects. LiCl caused a similar aversion in CTL and EtOH mice (50% reduction). Finally, blood and brain ethanol concentrations were not different between CTL and EtOH mice following a 2 g/kg EtOH dose. CONCLUSIONS: The data indicate that CIE exposure produces tolerance to the aversive effects of 2 g/kg EtOH. This effect does not appear to be related to a learning deficit or altered EtOH pharmacokinetics. These data support the notion that tolerance to EtOH's aversive effects may contribute to excessive EtOH drinking in EtOH-dependent mice.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Consumo de Bebidas Alcoólicas/tendências , Aprendizagem da Esquiva/efeitos dos fármacos , Tolerância a Medicamentos , Etanol/administração & dosagem , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Aprendizagem da Esquiva/fisiologia , Tolerância a Medicamentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
20.
Cir Esp (Engl Ed) ; 100(6): 345-351, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35643356

RESUMO

INTRODUCTION: To analyze the predictors of pCR in NSCLC patients who underwent anatomical lung resection after induction therapy and to evaluate the postoperative results of these patients. METHODS: All patients prospectively registered in the database of the GE-VATS working group undergone anatomic lung resection by NSCLC after induction treatment and recruited between 12/20/2016 and 3/20/2018 were included in the study. The population was divided into two groups: patients who obtained a complete pathological response after induction (pCR) and patients who did not obtain a complete pathological response after induction (non-pCR). A multivariate analysis was performed using a binary logistic regression to determine the predictors of pCR and the postoperative results of patients were analyzed. RESULTS: Of the 241 patients analyzed, 36 patients (14.9%) achieved pCR. Predictive factors for pCR are male sex (OR: 2.814, 95% CI: 1.015-7.806), histology of squamous carcinoma (OR: 3.065, 95% CI: 1.233-7.619) or other than adenocarcinoma (OR: 5.788, 95% CI: 1.878-17.733) and induction therapy that includes radiation therapy (OR: 4.096, 95% CI: 1.785-9.401) and targeted therapies (OR: 7.625, 95% CI: 2.147-27.077). Prevalence of postoperative pulmonary complications was higher in patients treated with neoadjuvant chemo-radiotherapy (p = 0.032). CONCLUSIONS: Male sex, histology of squamous carcinoma or other than ADC, and induction therapy that includes radiotherapy or targeted therapy are positive predictors for obtaining pCR. Induction chemo-radiotherapy is associated with a higher risk of postoperative pulmonary complications.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma de Células Escamosas/cirurgia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pneumonectomia/efeitos adversos , Pneumonectomia/métodos , Complicações Pós-Operatórias/etiologia , Cirurgia Torácica Vídeoassistida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA