RESUMO
Temporal costs influence reward-based decisions. This is commonly studied in temporal discounting tasks that involve choosing between cues signaling an imminent reward option or a delayed reward option. However, it is unclear whether the temporal delay before a reward can alter the value of that option. To address this, we identified the relative preference between different flavored rewards during a free-feeding test using male and female rats. Animals underwent training where either the initial preferred or the initial less preferred reward was delivered noncontingently. By manipulating the intertrial interval during training sessions, we could determine whether temporal delays impact reward preference in a subsequent free-feeding test. Rats maintained their initial preference if the same delays were used across all training sessions. When the initial less preferred option was delivered after short delays (high reward rate) and the initial preferred option was delivered after long delays (low reward rate), rats expectedly increased their preference for the initial less desirable option. However, rats also increased their preference for the initial less desirable option under the opposite training contingencies: delivering the initial less preferred reward after long delays and the initial preferred reward after short delays. These data suggest that sunk temporal costs enhance the preference for a less desirable reward option. Pharmacological and lesion experiments were performed to identify the neural systems responsible for this behavioral phenomenon. Our findings demonstrate the basolateral amygdala and retrosplenial cortex are required for temporal delays to enhance the preference for an initially less desirable reward.SIGNIFICANCE STATEMENT The goal of this study was to determine how temporal delays influence reward preference. We demonstrate that delivering an initially less desirable reward after long delays subsequently increases the consumption and preference for that reward. Furthermore, we identified the basolateral amygdala and the retrosplenial cortex as essential nuclei for mediating the change in reward preference elicited by sunk temporal costs.
Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento de Escolha/fisiologia , Giro do Cíngulo/fisiologia , Recompensa , Fatores de Tempo , Animais , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Feminino , Flupentixol/farmacologia , Preferências Alimentares , Giro do Cíngulo/efeitos dos fármacos , Masculino , N-Metilaspartato/toxicidade , Ratos , Ratos Sprague-DawleyRESUMO
Reorientation enables navigators to regain their bearings after becoming lost. Disoriented individuals primarily reorient themselves using the geometry of a layout, even when other informative cues, such as landmarks, are present. Yet the specific strategies that animals use to determine geometry are unclear. Moreover, because vision allows subjects to rapidly form precise representations of objects and background, it is unknown whether it has a deterministic role in the use of geometry. In this study, we tested sighted and congenitally blind mice (Ns = 8-11) in various settings in which global shape parameters were manipulated. Results indicated that the navigational affordances of the context-the traversable space-promote sampling of boundaries, which determines the effective use of geometric strategies in both sighted and blind mice. However, blind animals can also effectively reorient themselves using 3D edges by extensively patrolling the borders, even when the traversable space is not limited by these boundaries.
Assuntos
Orientação , Percepção Espacial , Animais , Cegueira , Sinais (Psicologia) , Humanos , Matemática , CamundongosRESUMO
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). Most GABAergic neurons synthesize GABA from glutamate and release it in the synaptic cleft in the CNS. However, astrocytes can also synthesize and release GABA, activating GABA receptors in the neighboring neurons in physiological and pathological conditions. As the primary homeostatic glial cells in the brain, astrocytes play a crucial role in regulating GABA homeostasis and synaptic neurotransmission. Accumulating evidence demonstrates that astrocytic GABA dysregulation is implicated in psychiatric disorders, including alcohol use disorder (AUD) and major depressive disorder (MDD), the most prevalent co-occurring psychiatric disorders. Several current medications and emerging pharmacological agents targeting GABA levels are in clinical trials for treating AUD and MDD. This review offers a concise summary of the role of astrocytic GABA regulation in AUD and MDD. We also provide an overview of the current understanding and areas of debate regarding the mechanisms by which astrocytes regulate GABA in the CNS and their potential significance in the molecular basis of AUD and MDD, paving the way toward future research directions and potential therapeutic target areas within this field.
Assuntos
Transtorno Depressivo Maior , Humanos , Astrócitos/fisiologia , Ácido gama-Aminobutírico , Receptores de GABA , Neurônios GABAérgicosRESUMO
Reorientation, the process of regaining one's bearings after becoming lost, requires identification of a spatial context (context recognition) and recovery of facing direction within that context (heading retrieval). We previously showed that these processes rely on the use of features and geometry, respectively. Here, we examine reorientation behavior in a task that creates contextual ambiguity over a long timescale to demonstrate that male mice learn to combine both featural and geometric cues to recover heading. At the neural level, most CA1 neurons persistently align to geometry, and this alignment predicts heading behavior. However, a small subset of cells remaps coherently in a context-sensitive manner, which serves to predict context. Efficient heading retrieval and context recognition correlate with rate changes reflecting integration of featural and geometric information in the active ensemble. These data illustrate how context recognition and heading retrieval are coded in CA1 and how these processes change with experience.
Assuntos
Região CA1 Hipocampal , Sinais (Psicologia) , Animais , Masculino , Camundongos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Neurônios/fisiologia , Orientação Espacial/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/fisiologia , Hipocampo/citologia , Reconhecimento Psicológico/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologiaRESUMO
Reorientation, the process of regaining one's bearings after becoming lost, requires identification of a spatial context (context recognition) and recovery of heading direction within that context (heading retrieval). We previously showed that these processes rely on the use of features and geometry, respectively. Here, we examine reorientation behavior in a task that creates contextual ambiguity over a long timescale to demonstrate that mice learn to combine both featural and geometric cues to recover heading with experience. At the neural level, most CA1 neurons persistently align to geometry, and this alignment predicts heading behavior. However, a small subset of cells shows feature-sensitive place field remapping, which serves to predict context. Efficient heading retrieval and context recognition require integration of featural and geometric information in the active network through rate changes. These data illustrate how context recognition and heading retrieval are coded in CA1 and how these processes change with experience.
RESUMO
Poor sleep quality is associated with age-related cognitive decline, and whether reversal of these alterations is possible is unknown. In this study, we report how sleep deprivation (SD) affects hippocampal representations, sleep patterns, and memory in young and old mice. After training in a hippocampus-dependent object-place recognition (OPR) task, control animals sleep ad libitum, although experimental animals undergo 5 h of SD, followed by recovery sleep. Young controls and old SD mice exhibit successful OPR memory, whereas young SD and old control mice are impaired. Successful performance is associated with two cellular phenotypes: (1) "context" cells, which remain stable throughout training and testing, and (2) "object configuration" cells, which remap when objects are introduced to the context and during testing. Additionally, effective memory correlates with spindle counts during non-rapid eye movement (NREM)/rapid eye movement (REM) sigma transitions. These results suggest SD may serve to ameliorate age-related memory deficits and allow hippocampal representations to adapt to changing environments.