Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(3): 852-859.e3, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984799

RESUMO

BACKGROUND: Itch is a common symptom that can greatly diminish quality of life. Histamine is a potent endogenous pruritogen, and while antihistamines are often the first-line treatment for itch, in conditions like chronic spontaneous urticaria (CSU), many patients remain symptomatic while receiving maximal doses. Mechanisms that drive resistance to antihistamines are poorly defined. OBJECTIVES: Signaling of the alarmin cytokine IL-33 in sensory neurons is postulated to drive chronic itch by inducing neuronal sensitization to pruritogens. Thus, we sought to determine if IL-33 can augment histamine-induced (histaminergic) itch. METHODS: Itch behavior was assessed in response to histamine after IL-33 or saline administration. Various stimuli and conditional and global knockout mice were utilized to dissect cellular mechanisms. Multiple existing transcriptomic data sets were evaluated, including single-cell RNA sequencing of human and mouse skin, microarrays of isolated mouse mast cells at steady state and after stimulation with IL-33, and microarrays of skin biopsy samples from subjects with CSU and healthy controls. RESULTS: IL-33 amplifies histaminergic itch independent of IL-33 signaling in sensory neurons. Mast cells are the top expressors of the IL-33 receptor in both human and mouse skin. When stimulated by IL-33, mouse mast cells significantly increase IL-13 levels. Enhancement of histaminergic itch by IL-33 relies on a mast cell- and IL-13-dependent mechanism. IL-33 receptor expression is increased in lesional skin of subjects with CSU compared to healthy controls. CONCLUSIONS: Our findings suggest that IL-33 signaling may be a key driver of histaminergic itch in mast cell-associated pruritic conditions such as CSU.


Assuntos
Histamina , Pele , Camundongos , Animais , Humanos , Pele/patologia , Histamina/metabolismo , Interleucina-33/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Qualidade de Vida , Prurido/patologia , Antagonistas dos Receptores Histamínicos , Camundongos Knockout
2.
Exp Dermatol ; 29(10): 993-1003, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737987

RESUMO

Skin models mimicking features of psoriasis-related inflammation are needed to support the development of new drugs in dermatology. Reconstructed skin models lack tissue complexity, including a fully competent skin barrier, and presence and/or diversity of immune cells. Here, we describe InflammaSkin®, a novel human Th17-driven ex vivo skin inflammation model. In this model, skin-resident T cells are in situ activated by intradermal injection of anti-CD3 and anti-CD28 antibodies and Th17 cell polarization is sustained by culture in a chemically defined medium supplemented with IL-1ß, IL-23 and TGF-ß for seven days. The acquired Th17 signature is demonstrated by the sustained secretion of IL-17A, IL-17AF, IL-17F, IL-22, IFN-γ, and to some degree IL-15 and TNF-α observed in the activated ex vivo skin inflammation model compared with the non-activated skin model control. Furthermore, expression of S100A7 and Keratin-16 by keratinocytes and loss of epidermal structure integrity occur subsequently to in situ Th17cell activation, demonstrating cellular crosstalk between Th17 cells and keratinocytes. Finally, we demonstrate the use of this model to investigate the modulation of the IL-23/IL-17 immune axis by topically applied anti-inflammatory compounds. Taken together, we show that by in situ activation of skin-resident Th17 cells, the InflammaSkin® model reproduces aspects of inflammatory responses observed in psoriatic lesions and could be used as a translational tool to assess efficacy of test compounds.


Assuntos
Dermatite/imunologia , Ativação Linfocitária , Modelos Biológicos , Células Th17/imunologia , Anti-Inflamatórios/uso terapêutico , Anticorpos , Betametasona/análogos & derivados , Betametasona/uso terapêutico , Antígenos CD28/imunologia , Complexo CD3/imunologia , Comunicação Celular , Meios de Cultura , Dermatite/tratamento farmacológico , Humanos , Interferon gama/metabolismo , Interleucina-15/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Queratina-16/metabolismo , Queratinócitos/metabolismo , Inibidores da Fosfodiesterase 4/uso terapêutico , Proteína A7 Ligante de Cálcio S100/metabolismo , Células Th17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina 22
4.
Yale J Biol Med ; 90(3): 389-402, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28955179

RESUMO

There is a medical need to develop new treatments for patients suffering from atopic dermatitis (AD). To improve the discovery and testing of novel treatments, relevant animal models for AD are needed. Generally, these animal models mimic different aspects of the pathophysiology of human AD, such as skin barrier defects and Th2 immune bias with additional Th1 and Th22, and in some populations Th17, activation. However, the pathomechanistic characterization and pharmacological validation of these animal models are generally incomplete. In this paper, we review animal models of AD in the context of preclinical use and their possible translation to the human disease. Most of these models use mice, but we will also critically evaluate dog models of AD, as increasing information on disease mechanism show their likely relevance for the human disease.


Assuntos
Dermatite Atópica/metabolismo , Animais , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Cães , Humanos , Camundongos , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
5.
Exp Dermatol ; 25(6): 453-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26841714

RESUMO

Atopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. In this study, we used microarray analysis to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared to skin from healthy controls and from lesional psoriasis skin. The primary aim was to identify differentially expressed genes involved in skin barrier formation and inflammation, and to compare our results with those reported for patients with moderate and severe AD. In contrast to severe AD, expression of the majority of genes associated with skin barrier formation was unchanged or upregulated in patients with mild AD compared to normal healthy skin. Among these, no significant differences in the expression of filaggrin (FLG) and loricrin at both mRNA and protein level were found in lesional skin from patients with mild AD, despite the presence of heterozygous FLG mutations in the majority of patients with mild extrinsic AD. Several inflammation-associated genes such as S100A9, MMP12, CXCL10 and CCL18 were highly expressed in lesional skin from patients with mild psoriasis and were also increased in patients with mild extrinsic and intrinsic AD similar to previous reports for severe AD. Interestingly, expression of genes involved in inflammatory responses in intrinsic AD resembled that of psoriasis more than that of extrinsic AD. Overall, differences in expression of inflammation-associated genes found among patients with mild intrinsic and extrinsic AD correlated with previous findings for patients with severe intrinsic and extrinsic AD.


Assuntos
Dermatite Atópica/metabolismo , Perfilação da Expressão Gênica , Psoríase/metabolismo , Adulto , Estudos de Casos e Controles , Dermatite Atópica/classificação , Dermatite Atópica/patologia , Proteínas Filagrinas , Humanos , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Pele/metabolismo , Pele/patologia , Adulto Jovem
6.
J Immunol ; 192(7): 2975-83, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24600030

RESUMO

Substances that penetrate the skin surface can act as allergens and induce a T cell-mediated inflammatory skin disease called contact hypersensitivity (CHS). IL-17 is a key cytokine in CHS and was originally thought to be produced solely by CD4(+) T cells. However, it is now known that several cell types, including γδ T cells, can produce IL-17. In this study, we determine the role of γδ T cells, especially dendritic epidermal T cells (DETCs), in CHS. Using a well-established model for CHS in which 2,4-dinitrofluorobenzene (DNFB) is used as allergen, we found that γδ T cells are important players in CHS. Thus, more IL-17-producing DETCs appear in the skin following exposure to DNFB in wild-type mice, and DNFB-induced ear swelling is reduced by ∼50% in TCRδ(-/-) mice compared with wild-type mice. In accordance, DNFB-induced ear swelling was reduced by ∼50% in IL-17(-/-) mice. We show that DNFB triggers DETC activation and IL-1ß production in the skin and that keratinocytes produce IL-1ß when stimulated with DNFB. We find that DETCs activated in vitro by incubation with anti-CD3 and IL-1ß produce IL-17. Importantly, we demonstrate that the IL-1R antagonist anakinra significantly reduces CHS responses, as measured by decreased ear swelling, inhibition of local DETC activation, and a reduction in the number of IL-17(+) γδ T cells and DETCs in the draining lymph nodes. Taken together, we show that DETCs become activated and produce IL-17 in an IL-1ß-dependent manner during CHS, suggesting a key role for DETCs in CHS.


Assuntos
Dermatite de Contato/imunologia , Interleucina-1beta/imunologia , Células de Langerhans/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Dermatite de Contato/genética , Dermatite de Contato/metabolismo , Dinitrofluorbenzeno/imunologia , Citometria de Fluxo , Expressão Gênica/imunologia , Interleucina-17/deficiência , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/genética , Interleucina-1beta/farmacologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células de Langerhans/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Pele/imunologia , Pele/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
7.
Blood ; 113(23): 5896-904, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19351960

RESUMO

B-lymphoid kinase (Blk) is exclusively expressed in B cells and thymocytes. Interestingly, transgenic expression of a constitutively active form of Blk in the T-cell lineage of mice results in the development of T-lymphoid lymphomas. Here, we demonstrate nuclear factor-kappa B (NF-kappaB)-mediated ectopic expression of Blk in malignant T-cell lines established from patients with cutaneous T-cell lymphoma (CTCL). Importantly, Blk is also expressed in situ in lesional tissue specimens from 26 of 31 patients with CTCL. Already in early disease the majority of epidermotropic T cells express Blk, whereas Blk expression is not observed in patients with benign inflammatory skin disorders. In a longitudinal study of an additional 24 patients biopsied for suspected CTCL, Blk expression significantly correlated with a subsequently confirmed diagnosis of CTCL. Blk is constitutively tyrosine phosphorylated in malignant CTCL cell lines and spontaneously active in kinase assays. Furthermore, targeting Blk activity and expression by Src kinase inhibitors and small interfering RNA (siRNA) inhibit the proliferation of the malignant T cells. In conclusion, this is the first report of Blk expression in CTCL, thereby providing new clues to the pathogenesis of the disease.


Assuntos
Linfoma Cutâneo de Células T/enzimologia , Neoplasias Cutâneas/enzimologia , Quinases da Família src/metabolismo , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estudos Longitudinais , Linfoma Cutâneo de Células T/epidemiologia , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/patologia , NF-kappa B/metabolismo , Estadiamento de Neoplasias , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Quinases da Família src/genética
8.
Dermatol Ther (Heidelb) ; 11(1): 265-274, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33458806

RESUMO

INTRODUCTION: T-helper 17 (Th17) cytokines play a key role in the pathophysiology of psoriasis by driving inflammatory responses that lead to epidermal alterations. Markers of epidermal differentiation, including the proteins loricrin (LOR), filaggrin (FLG) and involucrin (IVL), are dysregulated in psoriatic skin. The fixed-dose combination of calcipotriol/betamethasone dipropionate (Cal/BD) foam and clobetasol propionate (CP) are widely used, effective topical treatments for psoriasis. In this study, we investigated the effects of Cal/BD foam and CP cream on Th17 cytokine secretion and epidermal differentiation using a human Th17 skin inflammation model (InflammaSkin®). METHODS: The fixed-dose combination Cal/BD foam and the CP cream were applied once and twice daily, respectively, onto the air-exposed epidermal surface of InflammaSkin cultures for 7 days. Th17 cytokine levels were measured in culture supernatants, and gene expression analysis and immunohistochemical staining for LOR, FLG and IVL were performed on the skin samples. RESULTS: Topical treatment with Cal/BD foam almost completely inhibited Th17 cytokine secretion and upregulated LOR and IVL expression, but not FLG expression, at the mRNA and protein levels. Topical treatment with CP cream significantly reduced Th17 cytokine levels, but to a lesser extent than Cal/BD foam, and did not improve expression of any of the epidermal differentiation markers. CONCLUSION: Compared with CP treatment, the fixed-dose combination Cal/BD foam showed a greater suppression of Th17 cytokine secretion and improved epidermal differentiation, resulting in an overall higher degree of improvement of the skin. These results support our understanding of the mechanisms behind the clinical efficacy observed for Cal/BD foam and of its use for long-term proactive treatment of psoriasis vulgaris.

9.
J Dermatol Sci ; 97(2): 109-116, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31948839

RESUMO

BACKGROUND: Psoriasis is a chronic, inflammatory skin disorder resulting from a complex interplay between immune and skin cells via release of soluble mediators. While a lot is known about the molecular mechanisms behind psoriasis pathogenesis, there is still a need for preclinical research models that accuratelyreplicate the disease. OBJECTIVE: This study aimed to develop and characterize ex vivo culture of psoriasis skin as a model for pharmacological testing, where the immunological events of psoriasis can be followed. METHODS: Full thickness punch biopsies of lesional psoriasis skin were cultured in submerged conditions up to 144 h followingin situ T cell stimulation with rhIL-23 and anti-CD3 and anti-CD28 antibodies. The T cell mediated skin inflammation was assessed by gene and protein l analysis for a panel of inflammatory mediators. Tissue integrity and morphology were evaluated by histological analysis. RESULTS: T cell stimulation resulted in functional and psoriasis specificin situ activation of T cells. The expression levels of most of the proinflammatory mediators related to both immune and skin cells were comparable to these in freshly isolated tissue at 48 and 96 h of culture. Tissue integrity and morphology were sustained up to 96 h. Treatment with a corticosteroid reduced the expression of several pro-inflammatory cytokines and chemokines, whereas anti-IL-17A antibody treatment reduced the expression of the IL-17A downstream markers IL-8 and DEFB4. CONCLUSION: By preserving keyimmunopathological mechanisms of psoriasis, ex vivo culture of psoriasis skin can be used for the investigation of inflammatory processes of psoriasis and for preclinical drug discovery research.


Assuntos
Fármacos Dermatológicos/farmacologia , Psoríase/tratamento farmacológico , Pele/patologia , Técnicas de Cultura de Tecidos , Biópsia , Meios de Cultura/metabolismo , Citocinas/metabolismo , Fármacos Dermatológicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Subunidade p19 da Interleucina-23/imunologia , Subunidade p19 da Interleucina-23/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Psoríase/imunologia , Psoríase/patologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
J Med Chem ; 63(13): 7008-7032, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462873

RESUMO

Herein, we report the discovery of a series of JAK1-selective kinase inhibitors with high potency and excellent JAK family subtype selectivity. A fragment screening hit 1 with a pyrazolopyridone core and a JAK1 bias was selected as the starting point for our fragment-based lead generation efforts. A two-stage strategy was chosen with the dual aims of improving potency and JAK1 selectivity: Optimization of the lipophilic ribose pocket-targeting substituent was followed by the introduction of a variety of P-loop-targeting functional groups. Combining the best moieties from both stages of the optimization afforded compound 40, which showed excellent potency and selectivity. Metabolism studies in vitro and in vivo together with an in vitro safety evaluation suggest that 40 may be a viable lead compound for the development of highly subtype-selective JAK1 inhibitors.


Assuntos
Desenho de Fármacos , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Piridonas/química , Piridonas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Janus Quinase 1/química , Janus Quinase 1/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Piridonas/metabolismo , Estereoisomerismo , Especificidade por Substrato
11.
Sci Transl Med ; 12(532)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102931

RESUMO

Atopic dermatitis (AD) is a widespread, chronic skin disease associated with aberrant allergic inflammation. Current treatments involve either broad or targeted immunosuppression strategies. However, enhancing the immune system to control disease remains untested. We demonstrate that patients with AD harbor a blood natural killer (NK) cell deficiency that both has diagnostic value and improves with therapy. Multidimensional protein and RNA profiling revealed subset-level changes associated with enhanced NK cell death. Murine NK cell deficiency was associated with enhanced type 2 inflammation in the skin, suggesting that NK cells play a critical immunoregulatory role in this context. On the basis of these findings, we used an NK cell-boosting interleukin-15 (IL-15) superagonist and observed marked improvement in AD-like disease in mice. These findings reveal a previously unrecognized application of IL-15 superagonism, currently in development for cancer immunotherapy, as an immunotherapeutic strategy for AD.


Assuntos
Dermatite Atópica , Deficiência de GATA2 , Animais , Dermatite Atópica/terapia , Modelos Animais de Doenças , Humanos , Imunoterapia , Células Matadoras Naturais , Camundongos
12.
Front Plant Sci ; 10: 846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333695

RESUMO

Coevolutionary theory suggests that an arms race between plants and herbivores yields increased plant specialized metabolite diversity and the geographic mosaic theory of coevolution predicts that coevolutionary interactions vary across geographic scales. Consequently, plant specialized metabolite diversity is expected to be highest in coevolutionary hotspots, geographic regions, which exhibit strong reciprocal selection on the interacting species. Despite being well-established theoretical frameworks, technical limitations have precluded rigorous hypothesis testing. Here we aim at understanding how geographic separation over evolutionary time may have impacted chemical differentiation in the cosmopolitan plant genus Euphorbia. We use a combination of state-of-the-art computational mass spectral metabolomics tools together with cell-based high-throughput immunomodulatory testing. Our results show significant differences in specialized metabolite diversity across geographically separated phylogenetic clades. Chemical structural diversity of the highly toxic Euphorbia diterpenoids is significantly reduced in species native to the Americas, compared to Afro-Eurasia. The localization of these compounds to young stems and roots suggest a possible ecological relevance in herbivory defense. This is further supported by reduced immunomodulatory activity in the American subclade as well as herbivore distribution patterns. We conclude that computational mass spectrometric metabolomics coupled with relevant ecological data provide a strong tool for exploring plant specialized metabolite diversity in a chemo-evolutionary framework.

13.
Nat Commun ; 9(1): 1420, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650963

RESUMO

The chronic skin inflammation psoriasis is crucially dependent on the IL-23/IL-17 cytokine axis. Although IL-23 is expressed by psoriatic keratinocytes and immune cells, only the immune cell-derived IL-23 is believed to be disease relevant. Here we use a genetic mouse model to show that keratinocyte-produced IL-23 is sufficient to cause a chronic skin inflammation with an IL-17 profile. Furthermore, we reveal a cell-autonomous nuclear function for the actin polymerizing molecule N-WASP, which controls IL-23 expression in keratinocytes by regulating the degradation of the histone methyltransferases G9a and GLP, and H3K9 dimethylation of the IL-23 promoter. This mechanism mediates the induction of IL-23 by TNF, a known inducer of IL-23 in psoriasis. Finally, in keratinocytes of psoriatic lesions a decrease in H3K9 dimethylation correlates with increased IL-23 expression, suggesting relevance for disease. Taken together, our data describe a molecular pathway where epigenetic regulation of keratinocytes can contribute to chronic skin inflammation.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Subunidade p19 da Interleucina-23/genética , Psoríase/genética , Pele/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Adulto , Animais , Modelos Animais de Doenças , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Inflamação , Interleucina-17/genética , Interleucina-17/metabolismo , Subunidade p19 da Interleucina-23/deficiência , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Cultura Primária de Células , Regiões Promotoras Genéticas , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Pele/patologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/deficiência
14.
J Dermatol Sci ; 81(3): 153-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26794805

RESUMO

BACKGROUND: Psoriasis vulgaris is characterised by epidermal hyper-proliferation and infiltration of immune cells including dendritic cells (DCs) and T cells. The inflammation is driven by a complex interplay between immune and skin cells involving interleukin (IL)-17A, IL-23 and TNF-α as key drivers. The calcipotriol/betamethasone dipropionate two-compound fixed combination product is widely used for topical treatment of psoriasis. However, the mechanism behind its high efficacy has not been elucidated in detail. OBJECTIVE: Here, we investigated and compared the immune modulatory effects of betamethasone, calcipotriol and the combination in ex vivo cultures of psoriatic skin and in vitro cultures of primary human cells that recapitulate key cellular activities of psoriatic inflammation. METHOD: The immune modulatory effect of the treatments on psoriatic skin and on in vitro differentiated Th1/Th17 cells, Tc1/Tc17 cells, monocyte-derived inflammatory dendritic cells and primary keratinocytes was assessed by a panel of inflammatory and phenotypic related transcription factors and cytokines. The expression was evaluated by both gene and protein analysis. RESULTS: Compared to vehicle control or mono-treatments, the effect of calcipotriol/betamethasone combination was significantly better in inhibiting the secretion of IL-17A and TNF-α in psoriatic skin. Additionally, the two components showed additive inhibitory effects on secretion of IL-23 and TNF-α by DCs, of IL-17A and TNF-α by both CD4(+) and CD8(+) T cells and reduced inflammatory responses in Th17-stimulated keratinocytes. Furthermore, calcipotriol was found to enhance IL-10 secretion in psoriatic skin and in human T cells, to induce secretion of type 2 cytokines by T cells and, lastly, to significantly modulate the differentiation of DCs and T cells. CONCLUSIONS: In summary, we demonstrate a unique and supplementary immune modulatory effect of calcipotriol/betamethasone combination on TNF-α and IL-23/Th17 immune axis, supporting the superior clinical efficacy of the combination product compared to the respective mono-treatments in psoriasis patients.


Assuntos
Corticosteroides/farmacologia , Betametasona/análogos & derivados , Calcitriol/análogos & derivados , Citocinas/metabolismo , Fatores Imunológicos/farmacologia , Mediadores da Inflamação/metabolismo , Queratinócitos/efeitos dos fármacos , Células de Langerhans/efeitos dos fármacos , Psoríase/tratamento farmacológico , Células Th17/efeitos dos fármacos , Betametasona/farmacologia , Calcitriol/farmacologia , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Quimioterapia Combinada , Regulação da Expressão Gênica , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Fenótipo , Psoríase/genética , Psoríase/imunologia , Psoríase/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Técnicas de Cultura de Tecidos
15.
J Invest Dermatol ; 125(5): 936-44, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16297193

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by abnormal epidermal proliferation. Several studies have shown that skin-infiltrating activated T cells and cytokines play a pivotal role during the initiation and maintenance of the disease. Interferon (IFN)-alpha plays an important role in host defense against infections, but recent data have also implicated IFN-alpha in psoriasis. Thus, IFN-alpha induces or aggravates psoriasis in some patients, and mice lacking a transcriptional attenuator of IFN-alpha/beta signaling spontaneously develop a psoriasis-like inflammatory skin disease characterized by CD8(+)-infiltrating T cells. In this study, we therefore investigate IFN-alpha signaling in T cells isolated from involved skin of psoriatic patients. We show that psoriatic T cells have increased and prolonged responses to IFN-alpha, on the level of signal transducers and activators of transcription (STAT) activation, compared with infiltrating T cells from skin of non-psoriatic donors. Functionally, the increased IFN-alpha signaling leads to an increased binding of STAT4 to the IFN-gamma promotor, IFN-gamma production, and inhibition of T cell growth. In contrast, to STAT responses to other cytokines were not changed in psoriasis. In conclusion, we provide evidence that psoriatic T cells have an increased sensitivity to IFN-alpha. Thus, our data suggest that increased IFN-alpha signaling is involved in the pathogenesis of psoriasis.


Assuntos
Interferon-alfa/farmacologia , Psoríase/imunologia , Linfócitos T/efeitos dos fármacos , Apoptose , Humanos , Interferon gama/genética , Regiões Promotoras Genéticas , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
16.
Curr Eye Res ; 30(5): 375-83, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16020268

RESUMO

PURPOSE: To examine the effect of human retinal pigment epithelial (RPE) cells on phytohemagglutinin (PHA) activation of T cells. METHODS: Resting peripheral blood lymphocytes (PBLs) were stimulated with PHA with or without the presence of gamma-irradiated RPE cells. Proliferation and the cell cycle profile were thereafter investigated by 3H-thymidine incorporation and flow cytometric analysis. In addition, the PBLs expression of CD69, major histocompatibility complex (MHC) class I and II, CD3, as well as the IL-2 receptor chains were evaluated by flow cytometry, and the content of IL-2 in cell culture supernatant was measured by ELISA. RESULTS: Human RPE cells were found to suppress PHA-induced proliferation, cyclin A, IL-2R-alpha and -gamma, and CD71 expression and decrease the production of IL-2; but RPE cells do not inhibit the PHA-induced expression of early activation markers CD69, MHC class I and II, and of cyclin D of the PBLs. CONCLUSIONS: These results are the first to indicate that RPE cells impede generation of activated T cells by interfering with the induction of high-affinity IL-2R-alphabetagamma, IL-2 production, and the expression of CD71 and cyclin A.


Assuntos
Olho/imunologia , Ativação Linfocitária , Epitélio Pigmentado Ocular/imunologia , Linfócitos T/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Complexo CD3/metabolismo , Ciclo Celular , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Replicação do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Sistema Imunitário/fisiologia , Subunidade alfa de Receptor de Interleucina-2 , Lectinas Tipo C , Receptores de Interleucina/metabolismo
17.
J Invest Dermatol ; 135(5): 1311-1319, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25634359

RESUMO

The interaction between keratinocytes (KCs) and skin-resident immune cells has an important role in induction of contact hypersensitivity. A specific subset of γδ T cells termed dendritic epidermal T cells (DETCs) are located in mouse epidermis, and we have recently shown that DETCs become activated and produce IL-17 in an IL-1ß-dependent manner during contact hypersensitivity. Various receptors on DETCs, including NKG2D, are involved in DETC responses against tumors and during wound healing. The ligands for NKG2D (NKG2DL) are stress-induced proteins such as mouse UL16-binding protein-like transcript 1 (Mult-1), histocompatibility 60 (H60), and retinoic acid early inducible-1 (Rae-1) in mice and major histocompatibility complex (MHC) class I-chain-related A (MICA), MHC class I-chain-related B, and UL16-binding protein in humans. Here, we show that allergens upregulate expression of the NKG2DL Mult-1, H60, and Rae-1 in cultured mouse KCs and of MICA in primary human KCs. We demonstrate that Mult-1 is expressed in mouse skin exposed to allergen. Furthermore, we find that the vast majority of DETCs in murine epidermis and skin-homing cutaneous lymphocyte-associated antigen positive γδ T cells in humans express NKG2D. Finally, we demonstrate that blocking of NKG2D partially inhibits allergen-induced DETC activation. These findings demonstrate that NKG2D and NKG2DL are involved in allergen-induced activation of DETCs and indicate that the NKG2D/NKG2DL pathway might be a potential target for treatment of contact hypersensitivity.


Assuntos
Dermatite de Contato/metabolismo , Dermatite de Contato/patologia , Células de Langerhans/metabolismo , Células de Langerhans/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Alérgenos/efeitos adversos , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Cultivadas , Dermatite de Contato/etiologia , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília K de Receptores Semelhantes a Lectina de Células NK/efeitos dos fármacos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
19.
J Invest Dermatol ; 131(5): 1110-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21289639

RESUMO

Psoriasis is a chronic inflammatory skin disease primarily driven by Th17 cells. IL-23 facilitates the differentiation and induces complete maturation of Th17 cells. Lesional psoriatic skin has increased levels of IL-23 and recent studies show that intradermal injections of IL-23 induce a psoriasis-like skin phenotype in mice. We have now characterized the IL-23-induced skin inflammation in mice at the molecular level and found a significant correlation with the gene expression profile from lesional psoriatic skin. As observed in psoriasis, the pathogenesis of the IL-23-induced skin inflammation in mice is driven by Th17 cells. We demonstrate a dramatic upregulation of IL-6 mRNA and protein after intradermal injections of IL-23 in mice. Using IL-6(-/-) mice we show that IL-6 is essential for development of the IL-23-elicited responses. Despite producing high levels of IL-22, IL-6(-/-) mice were unable to express the high-affinity IL-22 receptor chain and produced minimal IL-17A in response to intradermal injections of IL-23. In conclusion, we provide evidence for the critical role played by IL-6 in IL-23-induced skin inflammation and show that IL-6 is required for expression of IL-22R1A.


Assuntos
Interleucina-23/imunologia , Interleucina-6/imunologia , Psoríase/imunologia , Animais , Feminino , Perfilação da Expressão Gênica , Hiperplasia/genética , Hiperplasia/imunologia , Hiperplasia/patologia , Interleucina-17/imunologia , Interleucina-6/genética , Interleucinas/biossíntese , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/genética , Psoríase/patologia , Receptores de Interleucina/imunologia , Pele/imunologia , Pele/patologia , Células Th17/imunologia , Regulação para Cima , Interleucina 22
20.
Blood ; 109(8): 3325-32, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17179233

RESUMO

Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients. The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth-promoting effect depends on direct cell-cell contact and soluble factors such as interleukin-2. In conclusion, we demonstrate that SE triggers a bidirectional cross talk between nonmalignant T cells and malignant CTCL cells that promotes growth of the malignant cells. This represents a novel mechanism by which infections with SE-producing bacteria may contribute to pathogenesis of CTCL.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Comunicação Celular/imunologia , Proliferação de Células , Enterotoxinas/imunologia , Linfoma Cutâneo de Células T/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Enterotoxinas/farmacologia , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/patologia , Infecções por Bactérias Gram-Positivas/fisiopatologia , Antígenos de Histocompatibilidade Classe II , Humanos , Interleucina-2/imunologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA