Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1893-1900, 2020 Apr.
Artigo em Zh | MEDLINE | ID: mdl-32489075

RESUMO

The study aims at exploring the expression of differential genes and related metabolic pathways in the process of seed dormancy release. The dormant embryo and the dormant released embryo of Paris polyphylla var. chinensis were used as the test materials, a new generation high-throughput sequencing methods to sequence the transcriptome of the samples was used to carry out systematic bioinformatics analysis. We obtained 62 882 650 and 62 263 366 clean reads from the DNA libraries of the samples before and after dormancy breaking. A total of 69 248 differentially expressed genes(DEGs) were obtained, 56 426 up-regulated genes and 12 822 down-regulated genes. There are 138 267 differentially expressed genes in the process of embryo dormancy release, which were annotated by GO function to 58 subclasses of biological processes, molecular functions and cell components. The annotated differentially expressed genes were closely related to metabolic processes, biological regulation, cell component synthesis and enzyme catalytic activity. We found 139 metabolic pathways through pathway analysis of 58 722 differentially expressed genes. Before and after dormancy, DEGs were mainly enriched in carbon metabolism, secondary metabolite biosynthesis and polysaccharide metabolism. Based on the annotation results in KEGG database, we found 16 metabolic pathways related to the dormancy release of P. polyhoylla var. chinensis. A large number of differentially expressed genes were involved in embryo morphogenesis, polysaccharide decomposition and protein synthesis during seed development and dormancy release. It involves the interaction of multiple metabolic pathways and constitutes a complex regulation network for dormancy relief.


Assuntos
Liliaceae , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dormência de Plantas , Sementes
2.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3837-3843, 2020 Aug.
Artigo em Zh | MEDLINE | ID: mdl-32893578

RESUMO

We used exogenous GA_3 to break the seed dormancy of Thesium chinense. We used high-throughput sequencing technology was used to sequence the transcriptome of dormant seed embryos and dormancy breaking seed embryos of Th. chinense, and the data was analyzed bioinformatically and systematically. The results showed that exogenous GA_3 could effectively break the seed dormancy of Th. chinense; 73 794 up-regulated genes and 42 776 down regulated genes were obtained by transcriptome sequencing; 116 570 diffe-rential genes were annotated by GO function to GO items such as metabolism process, cell process, cell, cell component, binding and catalytic activity. A total of 133 metabolic pathways were found by Pathway analysis of 26 508 differentially expressed genes. In the process of dormancy release, DEGs were mainly enriched in translation, carbohydrate metabolism, folding, classification, degradation and amino acid metabolism. Based on the annotation results in KEGG database, 20 metabolic pathways related to dormancy release were found. Dormancy release of Th. chinense seeds is a complex biological process, including cell morphology construction, secondary metabolite synthesis, sugar metabolism and plant signal transduction, among which plant hormone signal transduction is one of the key factors to regulate dormancy release. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Assuntos
Dormência de Plantas , Santalaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Sementes , Transcriptoma
3.
Front Pharmacol ; 13: 968226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120321

RESUMO

Kidney injuries may trigger renal fibrosis and lead to chronic kidney disease (CKD), but effective therapeutic strategies are still limited. Quercetin is a natural flavonoid widely distributed in herbal medicines. A large number of studies have demonstrated that quercetin may protect kidneys by alleviating renal toxicity, apoptosis, fibrosis and inflammation in a variety of kidney diseases. Therefore, quercetin could be one of the promising drugs in the treatment of renal disorders. In the present study, we review the latest progress and highlight the beneficial role of quercetin in kidney diseases and its underlying mechanisms. The pharmacokinetics and bioavailability of quercetin and its proportion in herbal medicine will also be discussed.

4.
Front Pharmacol ; 11: 583528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574750

RESUMO

Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-ß/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA