Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 463: 132918, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944237

RESUMO

The coexistence of microplastics (MPs) and arsenic (As) in terrestrial ecosystems presents challenges to controlling soil pollution and performing environmental risk assessments. In this study, the interactions among As, polystyrene MPs, and goethite in porous media were investigated and the individual and combined toxicities of MPs and As on wheat germination were evaluated. An additional experiment was conducted to assess the mitigating effect of goethite on the toxicity of the two contaminants. The results showed that the presence of MPs reduced As accumulation in wheat and decreased the acute lethal toxicity of As pollutants (the half-lethal concentration of As during wheat germination increased by 68.21%). However, MPs exhibited inhibitory effects on wheat germination and served as carriers to promote the migration of As within the plant body. The addition of goethite mitigated both individual and combined toxicities and further increased the half-lethal concentration for the combined pollution of As and MPs by 39.48%. This was primarily attributed to the adsorption and immobilization of arsenate and MPs on the medium and root surfaces. In our study, goethite reduced soluble As by 48.29% under the combined pollution scenarios and formed iron plaques on wheat roots, effectively obstructing pollutant entry. Thus, iron minerals serve as pioneering barriers to combined toxicity. Our findings contribute to the understanding of the combined toxicity of MPs and As in crops and offer potential strategies for managing combined pollution.


Assuntos
Arsênio , Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/toxicidade , Ferro , Plásticos , Arsênio/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Minerais
2.
Plant Physiol Biochem ; 216: 109155, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332328

RESUMO

Microplastics (MPs) are important carriers of various toxic metals and can alter their toxicity pattern in agricultural soil, leading to combined pollution, therefore posing new challenges to soil pollution management and environmental risk assessment. In this study, we observed the internalization of MPs in plants and conducted incubation experiments to evaluated the effects of arsenate (As(V)) alone and in combination with polystyrene (PS) MPs on wheat seedlings (Triticum aestivum L.). Under As(V) alone and combined with PS-MP exposure, dose-dependent toxicity in terms of root and stem elongation and biomass accumulation was observed. Compared with As(V) alone, the presence of PS-MPs reduced the accumulation of As in wheat roots by 11.43-58.91%, but PS-MPs intensified the transport of As to the aboveground parts of wheat, increasing As accumulation in wheat stems by 27.77-1011.54%. This causes more serious mechanical damage and oxidative stress to plant cells, increasing the accumulation of reactive oxygen species and lipid peroxidation in wheat roots and upregulating the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). In addition, the co-exposure of As(V) and PS-MPs disrupts the photosynthetic system of wheat leaves and the secretion activities of roots. Therefore, the combination of As(V) and PS-MPs caused greater damage to wheat growth. Our findings contribute to a more comprehensive assessment of the combined toxicity of MPs and heavy metal to crops.

3.
Ying Yong Sheng Tai Xue Bao ; 24(3): 832-8, 2013 Mar.
Artigo em Zh | MEDLINE | ID: mdl-23755502

RESUMO

A five-year field trial was conducted at the surrounding area of Dabao Mountain Mine to explore the feasibility and availability of using kenaf (Hibiscus cannabinus) , a fiber crop with strong heavy metals tolerance and potential economic value, to reclaim the multi-metal contaminated acidic farmland soil. Different amendments were applied prior to the kenaf planting to evaluate their effects on the soil properties and kenaf growth. After the amendments application, the kenaf could grow well on the heavy metals contaminated soil with the Pb, Zn, Cu, Cd, and As concentrations being 1600, 440, 640, 7. 6, and 850 mg . kg-1, respectively. Among the amendments, dolomite and fly ash had better effects than limestone and organic fertilizer. With the application of dolomite and fly ash, the aboveground dry mass production of kenaf reached 14-15 t . hm-2, which was similar to that on normal soils, and the heavy metal concentrations in the bast fiber and stem of kenaf decreased significantly, as compared with the control. The mass of the bast fiber accounted for 32% -38% of the shoot production, and the extractable heavy metal concentrations in the bast fiber could meet the standard of 'technical specifications of ecological textiles' in China, suggesting that the bast fiber had potential economic value. It was suggested that planting kenaf combining with dolomite/fly ash application could be an effective measure to reclaim the multi-metal contaminated acidic farmland soil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hibiscus/metabolismo , Metais Pesados/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Ácidos , Biodegradação Ambiental , Produtos Agrícolas/crescimento & desenvolvimento , Hibiscus/crescimento & desenvolvimento , Metais , Metais Pesados/metabolismo , Mineração , Poluentes do Solo/metabolismo
4.
Water Res ; 46(3): 854-62, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22189294

RESUMO

Lead sorption capacity and mechanisms by sludge-derived biochar (SDBC) were investigated to determine if treatment of acid mine drainage (AMD) containing metals with SDBC is feasible. It was found that the biochar derived from pyrolysis treatment of sewage sludge could effectively remove Pb(2+) from acidic solution with the capacities of 16.11, 20.11, 24.80, and 30.88mgg(-1) at initial pH 2, 3, 4 and 5, respectively. Lead sorption processes were pseudo-second order kinetic and faster at a higher pH. Furthermore, the relative contribution of both inorganic mineral composition and organic functional groups of SDBC for Pb(2+) removal mechanisms, was quantitatively studied at pH 2-5. The results showed that Pb sorption primarily involved the coordination with organic hydroxyl and carboxyl functional groups, which was 38.2-42.3% of the total sorbed Pb varying with pH, as well as the coprecipitation or complex on mineral surfaces, which accounted for 57.7-61.8% and led to a bulk of Ca(2+) and Mg(2+) release during sorption process. A new precipitate was solely observed on Pb-loaded SDBC as 5PbO·P(2)O(5)·SiO(2)(lead phosphate silicate) at initial pH 5, confirmed by XRD and SEM-EDX. The coordination of Pb(2+) with carboxyl and hydroxyl functional groups was demonstrated by FT-IR, and the contribution of free carboxyl was significant, ranging from 26.1% to 35.5%. Results from this study may suggest that the application of SDBC is a feasible strategy for removing metal contaminants from acid solutions.


Assuntos
Carvão Vegetal/química , Chumbo/isolamento & purificação , Esgotos/química , Adsorção , Precipitação Química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Purificação da Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA