RESUMO
In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores HistamínicosRESUMO
Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.
Assuntos
Fibra de Algodão , Genes de Plantas , Transcriptoma , Metabolismo dos Carboidratos , Gossypium/genética , Regulação da Expressão Gênica de Plantas , Parede Celular/metabolismoRESUMO
Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.
Assuntos
Produtos Biológicos , Galactosamina , Galactosamina/química , Hepatócitos/metabolismo , Oligonucleotídeos Antissenso/química , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo , Produtos Biológicos/metabolismoRESUMO
Liver cancer causes upwards of 1 million cancer deaths annually and is projected to rise by at least 55% over the next 15 years. Two of the major risk factors contributing to liver cancer have been well documented by multiple epidemiologic studies and the hepatitis B virus (HBV) and aflatoxin show a synergy that increases by more than 8-fold the risk of liver cancer relative to HBV alone. Using the population-based cancer registry established by the Qidong Liver Cancer Institute in 1972 and aflatoxin-specific biomarkers, we document that reduction of aflatoxin exposure has likely contributed to a nearly 70% decline in age-standardized liver cancer incidence over the past 30 years despite an unchanging prevalence of HBV infection in cases. A natural experiment of economic reform in the 1980s drove a rapid switch from consumption of heavily contaminated corn to minimally, if any, contaminated rice and subsequent dietary diversity. Aflatoxin consumption appears to accelerate the time to liver cancer diagnosis; lowering exposure to this carcinogen adds years of life before a cancer diagnosis. Thus, in 1990 the median age of diagnosis was 48 years, while increasing to 67 years by 2021. These findings have important translational public health implications since up to 5 billion people worldwide might be routinely exposed to dietary aflatoxin, especially in societies using corn as the staple food. Interventions against aflatoxin are an achievable outcome leading to a reduction in liver cancer incidence and years of delay of its nearly always fatal diagnosis.
RESUMO
Here, we describe a novel mycovirus, tentatively designated as "Nigrospora sphaerica fusarivirus 2" (NsFV2), which was isolated from the phytopathogenic fungus Nigrospora sphaerica strain HNXX-Ns20. NsFV2 has a single-stranded positive-sense RNA (+ ssRNA) genome of 6,156 nucleotides, excluding the poly(A) tail, and contains two putative open reading frames (ORFs). ORF1 encodes a large polypeptide of 1,509 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain and a viral helicase domain. The ORF1-encoded polypeptide shares 29.40-68.48% sequence identity with other fusariviruses and shares the highest sequence identity (68.48%) with Nigrospora sphaerica fusarivirus 1 (NsFV1). The small ORF2 encodes a polypeptide of 483 aa that contains a conserved chromosome segregation ATPase (Smc) domain. Multiple sequence alignments and phylogenetic analysis based on the ORF1-encoded polypeptide indicated that NsFV2 should be considered a new member of the genus Alphafusarivirus of the family Fusariviridae.
Assuntos
Ascomicetos , Micovírus , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Ascomicetos/virologia , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , RNA Viral/genética , Sequência de Aminoácidos , Proteínas Virais/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Alinhamento de SequênciaRESUMO
The number of individuals infected with HIV-1 among men who have sex with men (MSM) has risen rapidly in recent years in China, and the subtypes CRF01_AE, CRF07_BC, and B, as well as many novel unique recombinant forms (URFs) are prevalent among them. Co-circulation of strains among MSM populations allows the generation of circulating recombinant forms (CRFs) and URFs. In this study, we identified two new URFs from two HIV-1-positive subjects who were infected through homosexual contact in Hebei, China. Analysis of near-full-length genome sequences, using phylogenetic and recombination analysis showed that the two URFs originated from CRF01_AE, CRF07_BC, and B, and CRF01_AE segments in the backbone of the URFs were derived from cluster 4 of CRF01_AE. The CRF07_BC segments of two URFs were clustered with 07BC_N in a phylogenetic tree. The identification of novel URFs with complex genomic structures shows that it is necessary to strengthen surveillance of HIV-1 variants in MSM populations in this region.
Assuntos
Infecções por HIV , HIV-1 , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Filogenia , Infecções por HIV/epidemiologia , Recombinação Genética , Análise de Sequência de DNA , Genoma Viral , China/epidemiologia , HIV-1/genéticaRESUMO
PURPOSE OF REVIEW: This review aims to synthesize the old issues and current understandings of the etiology of liver cancer, focusing on the diverse causative factors influenced by geographical, socioeconomic, and lifestyle variations across different regions. RECENT FINDINGS: We highlight significant geographic disparities in liver cancer risk factors. While hepatitis B and C viruses, aflatoxin exposure, and alcohol consumption remain globally established contributors; metabolic dysfunction-associated steatotic liver disease and metabolic syndromes are increasingly prominent in the West. Chronic HBV and aflatoxin continue to dominate as risk factors in Asia and Africa. Dietary factors, metabolic diseases like diabetes and obesity, genetic predispositions, environmental risk factors and lifestyle choices such as smoking and alcohol use play substantial roles in specific populations. Protective factors like coffee and tea consumption, along with aspirin use, vegetables and fruits have shown potential in reducing HCC risk, although findings vary by population and dietary habits. Liver cancer etiology is influenced by various factors that differ by region. Established risk factors include hepatitis B and C, aflatoxin, and alcohol. Emerging risks, such as metabolic dysfunction-associated steatotic liver disease, are more prevalent in Western countries, while aflatoxin and HBV remains significant in Asia and Africa. Diet, metabolic conditions like diabetes and obesity, genetic predispositions, and lifestyle choices also play crucial roles. Coffee, tea, aspirin, vegetables, and fruits may reduce HCC risk, but effectiveness varies. Future research should integrate epidemiology, genetics, and nutrition, with global cooperation and data sharing essential for effective cancer control strategies.
RESUMO
Nanotechnology has emerged as a promising frontier in revolutionizing the early diagnosis and surgical management of gastric cancers. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high surgical and pharmacological therapy recurrence rates. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for detecting and treating cancer. Considering the limitations of GIC MRI and endoscopy and the complexity of gastric surgery, the early diagnosis and prompt treatment of gastric illnesses by nanotechnology has been a promising development. Nanoparticles directly target tumor cells, allowing their detection and removal. It also can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance the efficacy and precision of cancer treatment. In this research, the boosting technique of machine learning was utilized to capture nonlinear interactions between a large number of input variables and outputs by using XGBoost and RNN-CNN as a classification method. The research sample included 350 patients, comprising 200 males and 150 females. The patients' mean ± SD was 50.34 ± 13.04 with a mean age of 50.34 ± 13.04. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.034), distant metastasis (P = 0.004), and tumor stage (P = 0.014) were shown to have a statistically significant link with GC patient survival. AUC was 93.54%, Accuracy 93.54%, F1-score 93.57%, Precision 93.65%, and Recall 93.87% when analyzing stomach pictures. Integrating nanotechnology with advanced machine learning techniques holds promise for improving the diagnosis and treatment of gastric cancer, providing new avenues for precision medicine and better patient outcomes.
Assuntos
Neoplasias Gástricas , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Detecção Precoce de Câncer , Aprendizado de Máquina , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: The selection of prophylactic antibiotics for preventing post-operative pulmonary infections in smoking patients undergoing video-assisted thoracoscopic lung surgery (VATLS) is not clear. METHODS: In this retrospective cohort study, the outcomes of 572 smoking patients undergoing VATLS with prophylactic cefazolin/cefuroxime or other antibiotics were analyzed. Patients were classified as cefazolin/cefuroxime group and the control group. A 1:1 propensity score matching was also performed. RESULTS: The primary outcome of the incidence of post-operative pulmonary infection did not differ significantly between the two groups (23.7% vs 30.5%, RR = 0.777, 95%CI 0.564 ~ 1.070 p = 0.113). Similarly, secondary outcomes including the incidence of post-operative fever, the white blood cell count and neutrophils on the 3rd day after the surgery, and time for blood routine test recovery were all found without significant difference between the two groups. In the multivariate logistic regression model, no association was found between prophylactic use of cefazolin/cefuroxime and post-operative pulmonary infections after controlling other possible confounding factors (OR = 0.685, 95%CI 0.441 ~ 1.065, p = 0.093). CONCLUSIONS: Prophylactic use of cefazolin/cefuroxime was not associated with more adverse clinical outcomes among smoking populations undergoing VATLS when compared with broad-spectrum antibiotics and the two drugs are still feasible for peri-operative prophylactic use for smoking population before the surgery.
Assuntos
Cefazolina , Pneumonia , Humanos , Cefazolina/uso terapêutico , Antibacterianos/uso terapêutico , Cefuroxima , Estudos Retrospectivos , Pontuação de Propensão , Cirurgia Torácica Vídeoassistida , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Pulmão , Fumar , Antibioticoprofilaxia , Infecção da Ferida Cirúrgica/epidemiologiaRESUMO
Osmotic pump systems require prolonged retention time in the stomach to provide enhanced bioavailability and regulated release, which is quite challenging. This study used a three-dimensional printing (3DP) technique combined with a gastro-retentive floating device (GRFD) to extend the retention of the osmotic pump in the stomach and enhance its bioavailability. The strap-on buoyant device was fabricated by stereolithography 3DP and incorporated a felodipine osmotic pump tablet used in clinical practice, which enabled it to float in the stomach or dissolution media without any floating lag time. The components of the device were affixed using a snap-fix mechanism. GRFD dissolution study revealed a notable in vitro floating capability, lasting over 24 h, with a release profile similarity factor f2 = 65.28 compared to the naked tablet dissolution profile. The pharmacokinetics of felodipine osmotic pump in beagles showed a Cmax of 1.893 ng/mL, which increased to 4.511 ng/mL with GRFD. The delivery of an osmotic pump with GRFD enhanced the AUC0-∞ of felodipine from 10.20 ng/mL·h to 26.54 ng/mL·h. In conclusion, the strap-on buoyant device has been successfully designed to enhance gastrointestinal tract retention of felodipine osmotic pumps and bioavailability in beagles.
Assuntos
Disponibilidade Biológica , Felodipino , Trato Gastrointestinal , Osmose , Comprimidos , Felodipino/administração & dosagem , Felodipino/farmacocinética , Felodipino/química , Cães , Animais , Trato Gastrointestinal/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Impressão Tridimensional , Solubilidade , Liberação Controlada de Fármacos , Masculino , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/administração & dosagemRESUMO
BACKGROUND: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS: The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.
Assuntos
Gossypium , Proteínas de Plantas , Tolerância ao Sal , Gossypium/genética , Lectinas de Plantas , Estresse Salino , Tolerância ao Sal/genética , Proteínas de Plantas/metabolismoRESUMO
Gastric cancer (GC) has high rates of morbidity and mortality, and this phenomenon is particularly evident in coastal regions where local dietary habits favor the consumption of pickled foods such as salted fish and vegetables. In addition, the diagnosis rate of GC remains low due to the lack of diagnostic serum biomarkers. Therefore, in this study, we aimed to identify potential serum GC biomarkers for use in clinical practice. To identify candidate biomarkers of GC, 88 serum samples were first screened using a high-throughput protein microarray to measure the levels of 640 proteins. Then, 333 samples were used to validate the potential biomarkers using a custom antibody chip. ELISA, western blot, and immunohistochemistry were then used to verify the expression of the target proteins. Finally, logistic regression was performed to select serum proteins for the diagnostic model. As a result, five specific differentially expressed proteins, TGFß RIII, LAG-3, carboxypeptidase A2, Decorin and ANGPTL3, were found to have the ability to distinguish GC. Logistic regression analysis showed that the combination of carboxypeptidase A2 and TGFß RIII had superior potential for diagnosing GC (area under the ROC curve [AUC] = 0.801). The results suggested that these five proteins alone and the combination of carboxypeptidase A2 and TGFß RIII may be used as serum markers for the diagnosis of GC.
Assuntos
Biomarcadores Tumorais , Neoplasias Gástricas , Humanos , Análise Serial de Proteínas , Neoplasias Gástricas/diagnóstico , Carboxipeptidases A , Detecção Precoce de Câncer , Curva ROC , Proteína 3 Semelhante a AngiopoietinaRESUMO
BACKGROUND: Cotton, being extensively cultivated, holds immense economic significance as one of the most prominent crops globally. The SET (Su(var), E, and Trithorax) domain-containing protein is of significant importance in plant development, growth, and response to abiotic stress by modifying the lysine methylation status of histone. However, the comprehensive identification of SET domain genes (SDG) have not been conducted in upland cotton (Gossypium hirsutum L.). RESULTS: A total of 229 SDGs were identified in four Gossypium species, including G. arboretum, G. raimondii, G. hirsutum, and G. barbadense. These genes could distinctly be divided into eight groups. The analysis of gene structure and protein motif revealed a high degree of conservation among the SDGs within the same group. Collinearity analysis suggested that the SDGs of Gossypium species and most of the other selected plants were mainly expanded by dispersed duplication events and whole genome duplication (WGD) events. The allopolyploidization event also has a significant impact on the expansion of SDGs in tetraploid Gossypium species. Furthermore, the characteristics of these genes have been relatively conserved during the evolution. Cis-element analysis revealed that GhSDGs play a role in resistance to abiotic stresses and growth development. Furthermore, the qRT-PCR results have indicated the ability of GhSDGs to respond to salt stress. Co-expression analysis revealed that GhSDG51 might co-express with genes associated with salt stress. In addition, the silencing of GhSDG51 in cotton by the virus-induced gene silencing (VIGS) method suggested a potential positive regulatory role of GhSDG51 in salt stress. CONCLUSIONS: The results of this study comprehensively analyze the SDGs in cotton and provide a basis for understanding the biological role of SDGs in the stress resistance in upland cotton.
Assuntos
Genoma de Planta , Gossypium , Genoma de Planta/genética , Gossypium/genética , Família Multigênica , Domínios PR-SET , Estresse Fisiológico/genética , Estresse Salino/genética , Filogenia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de PlantasRESUMO
The CCCH zinc-finger protein contains a typical C3H-type motif widely existing in plants, and it plays an important role in plant growth, development, and stress responses. In this study, a CCCH zinc-finger gene, GhC3H20, was isolated and thoroughly characterized to regulate salt stress in cotton and Arabidopsis. The expression of GhC3H20 was up-regulated under salt, drought, and ABA treatments. GUS activity was detected in the root, stem, leaves, and flowers of ProGhC3H20::GUS transgenic Arabidopsis. Compared with the control, the GUS activity of ProGhC3H20::GUS transgenic Arabidopsis seedlings under NaCl treatment was stronger. Through the genetic transformation of Arabidopsis, three transgenic lines of 35S-GhC3H20 were obtained. Under NaCl and mannitol treatments, the roots of the transgenic lines were significantly longer than those of the wild-type (WT) Arabidopsis. The leaves of the WT turned yellow and wilted under high-concentration salt treatment at the seedling stage, while the leaves of the transgenic Arabidopsis lines did not. Further investigation showed that compared with the WT, the content of catalase (CAT) in the leaves of the transgenic lines was significantly higher. Therefore, compared with the WT, overexpression of GhC3H20 enhanced the salt stress tolerance of transgenic Arabidopsis. A virus-induced gene silencing (VIGS) experiment showed that compared with the control, the leaves of pYL156-GhC3H20 plants were wilted and dehydrated. The content of chlorophyll in pYL156-GhC3H20 leaves was significantly lower than those of the control. Therefore, silencing of GhC3H20 reduced salt stress tolerance in cotton. Two interacting proteins (GhPP2CA and GhHAB1) of GhC3H20 have been identified through a yeast two-hybrid assay. The expression levels of PP2CA and HAB1 in transgenic Arabidopsis were higher than those in the WT, and pYL156-GhC3H20 had expression levels lower than those in the control. GhPP2CA and GhHAB1 are the key genes involved in the ABA signaling pathway. Taken together, our findings demonstrate that GhC3H20 may interact with GhPP2CA and GhHAB1 to participate in the ABA signaling pathway to enhance salt stress tolerance in cotton.
Assuntos
Gossypium , Proteínas de Plantas , Tolerância ao Sal , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Plântula/metabolismo , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Zinco/metabolismo , Gossypium/genética , Dedos de ZincoRESUMO
The reversible modification of proteins with lipoic acid (LPA)-derived polydisulfides (PDS) is an important approach toward the transient regulation and on-demand recovery of protein functions. The in situ growth of PDS from the cysteine (Cys) residue of a protein, however, has been challenging due to the near-equilibrium thermodynamics of the ring-opening polymerization of LPA. Here, we report the protein-mediated, aggregation-induced polymerization (AIP) of amphiphilic LPA-derived monomers at room temperature, which can be performed at a concentration as low as â¼2% of the equilibrium monomer concentration normally needed. The aggregation of monomers increases the effective monomer concentration in aqueous solutions to the degree that the polymerizations behave similarly to those in bulk. The PDS conjugation enhances the thermostability, protease resistance, and tolerance to freeze-thaw treatments of the target proteins. Moreover, the PDS conjugation allows rapid and convenient purification of Cys-bearing proteins by taking advantage of the liquid-liquid phase separation of the protein-PDS conjugates and the full recovery of native proteins under mild reducing conditions. This AIP effect may shed light on facilitating other polymerizations with a similar near-equilibrium character. The PDS conjugation can open up new avenues to protein delivery, dynamic and reversible protein engineering, enzyme preservation, and recycling.
Assuntos
Proteínas , Fenômenos Químicos , Polimerização , Proteínas/química , Temperatura , TermodinâmicaRESUMO
Cold stress can significantly affect the development, yield, and quality of crops and restrict the geographical distribution and growing seasons of plants. Aquaporins are the main channels for water transport in plant cells. Abiotic stresses such as cold and drought dehydrate cells by changing the water potential. In this study, we cloned a gene GhTIP1;1-like encodes tonoplast aquaporin from the transcriptome database of cotton seedlings after cold stress. Expression analysis showed that GhTIP1;1-like not only responds to cold stress but was also induced by heat, drought and salt stress. Subcellular localization showed that the protein was anchored to the vacuole membrane. Promoter deletion analysis revealed that a MYC motif within the promoter region of GhTIP1;1-like were the core cis-elements in response to low temperature. Virus-induced gene silencing (VIGS) and histochemical staining indicate that GhTIP1;1-like plays a positive role in plant cold tolerance. Overexpression of GhTIP1;1-like in Arabidopsis delayed the senescence process and enhanced the cold tolerance of transgenic plants. Compared with the wild type, the soluble protein concentration and peroxidase activity of the transgenic lines under cold stress were higher, while the malondialdehyde content was lower. In addition, the expression levels of cold-responsive genes were significantly increased in transgenic plants under cold stress. Our results indicate that GhTIP1;1-like could respond to different abiotic stresses and be positively involved in regulating the cold tolerance of cotton.
Assuntos
Aquaporinas/genética , Resposta ao Choque Frio/genética , Gossypium/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Temperatura Baixa , Secas , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Plântula/genética , Estresse Fisiológico/genética , Vacúolos/metabolismoRESUMO
Soil salinization conditions seriously restrict cotton yield and quality. Related studies have shown that the DUF4228 proteins are pivotal in plant resistance to abiotic stress. However, there has been no systematic identification and analysis of the DUF4228 gene family in cotton and their role in abiotic stress. In this study, a total of 308 DUF4228 genes were identified in four Gossypium species, which were divided into five subfamilies. Gene structure and protein motifs analysis showed that the GhDUF4228 proteins were conserved in each subfamily. In addition, whole genome duplication (WGD) events and allopolyploidization might play an essential role in the expansion of the DUF4228 genes. Besides, many stress-responsive (MYB, MYC) and hormone-responsive (ABA, MeJA) related cis-elements were detected in the promoters of the DUF4228 genes. The qRT-PCR results showed that GhDUF4228 genes might be involved in the response to abiotic stress. VIGS assays and the measurement of relative water content (RWC), Proline content, POD activity, and malondialdehyde (MDA) content indicated that GhDUF4228-67 might be a positive regulator of cotton response to salt stress. The results in this study systematically characterized the DUF4228s in Gossypium species and will provide helpful information to further research the role of DUF4228s in salt tolerance.
Assuntos
Gossypium , Tolerância ao Sal , Gossypium/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Família MultigênicaRESUMO
As one of the most important factors in alternative splicing (AS) events, serine/arginine-rich (SR) proteins not only participate in the growth and development of plants but also play pivotal roles in abiotic stresses. However, the research about SR proteins in cotton is still lacking. In this study, we performed an extensive comparative analysis of SR proteins and determined their phylogeny in the plant lineage. A total of 169 SR family members were identified from four Gossypium species, and these genes could be divided into eight distinct subfamilies. The domain, motif distribution and gene structure of cotton SR proteins are conserved within each subfamily. The expansion of SR genes is mainly contributed by WGD and allopolyploidization events in cotton. The selection pressure analysis showed that all the paralogous gene pairs were under purifying selection pressure. Many cis-elements responding to abiotic stress and phytohormones were identified in the upstream sequences of the GhSR genes. Expression profiling suggested that some GhSR genes may involve in the pathways of plant resistance to abiotic stresses. The WGCNA analysis showed that GhSCL-8 co-expressed with many abiotic responding related genes in a salt-responding network. The Y2H assays showed that GhSCL-8 could interact with GhSRs in other subfamilies. The subcellular location analysis showed that GhSCL-8 is expressed in the nucleus. The further VIGS assays showed that the silencing of GhSCL-8 could decrease salt tolerance in cotton. These results expand our knowledge of the evolution of the SR gene family in plants, and they will also contribute to the elucidation of the biological functions of SR genes in the future.
Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Arginina/metabolismo , Genoma de Planta , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Serina/metabolismo , Estresse Fisiológico/genéticaRESUMO
CONTEXT: Cnidium monnieri Cusson (Apiaceae) has been used in traditional Asian medicine for thousands of years. Recent studies showed its active compound, osthole, had a good effect on osteoporosis. But there was no comprehensive analysis. OBJECTIVE: This meta-analysis evaluates the effects of osthole on osteoporotic rats and provides a basis for future clinical studies. METHODS: Chinese and English language databases (e.g., PubMed, Web of Science, Cochrane Library, Google Scholar, Embase, China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, Weipu Chinese Sci-tech periodical full-text database, and Chinese BioMedical Literature Database) were searched from their establishment to February 2021. The effects of osthole on bone mineral density, osteoclast proliferation, and bone metabolism markers were compared with the effects of control treatments. RESULTS: To our knowledge, this is the first meta-analysis to evaluate osthole for the treatment of osteoporosis in rats. We included 13 randomized controlled studies conducted on osteoporotic rats. Osthole increased bone mineral density (standardized mean difference [SMD] = 3.08, 95% confidence interval [CI] = 2.08-4.09), the subgroup analysis showed that BMD significantly increased among rats in osthole <10 mg/kg/day and duration of osthole treatment >2 months. Osthole improved histomorphometric parameters and biomechanical parameters, also inhibited osteoclast proliferation and bone metabolism. CONCLUSIONS: Osthole is an effective treatment for osteoporosis. It can promote bone formation and inhibit bone absorption.
Assuntos
Cnidium , Osteoporose , Animais , Densidade Óssea , Cnidium/química , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Osteoporose/tratamento farmacológico , RatosRESUMO
BACKGROUND: B-BOX (BBX) proteins are zinc-finger transcription factors with one or two BBX domains and sometimes a CCT domain. These proteins play an essential role in regulating plant growth and development, as well as in resisting abiotic stress. So far, the BBX gene family has been widely studied in other crops. However, no one has systematically studied the BBX gene in cotton. RESULTS: In the present study, 17, 18, 37 and 33 BBX genes were detected in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively, via genome-wide identification. Phylogenetic analysis showed that all BBX genes were divided into 5 main categories. The protein motifs and exon/intron structures showed that each group of BBX genes was highly conserved. Collinearity analysis revealed that the amplification of BBX gene family in Gossypium spp. was mainly through segmental replication. Nonsynonymous (Ka)/ synonymous (Ks) substitution ratios indicated that the BBX gene family had undergone purification selection throughout the long-term natural selection process. Moreover, transcriptomic data showed that some GhBBX genes were highly expressed in floral organs. The qRT-PCR results showed that there were significant differences in GhBBX genes in leaves and shoot apexes between early-maturing materials and late-maturing materials at most periods. Yeast two-hybrid results showed that GhBBX5/GhBBX23 and GhBBX8/GhBBX26 might interact with GhFT. Transcriptome data analysis and qRT-PCR verification showed that different GhBBX genes had different biological functions in abiotic stress and phytohormone response. CONCLUSIONS: Our comprehensive analysis of BBX in G. hirsutum provided a basis for further study on the molecular role of GhBBXs in regulating flowering and cotton resistance to abiotic stress.