Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.289
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(22): 4000-4016.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37935198

RESUMO

While 19S proteasome regulatory particle (RP) inhibition is a promising new avenue for treating bortezomib-resistant myeloma, the anti-tumor impact of inhibiting 19S RP component PSMD14 could not be explained by a selective inhibition of proteasomal activity. Here, we report that PSMD14 interacts with NSD2 on chromatin, independent of 19S RP. Functionally, PSMD14 acts as a histone H2AK119 deubiquitinase, facilitating NSD2-directed H3K36 dimethylation. Integrative genomic and epigenomic analyses revealed the functional coordination of PSMD14 and NSD2 in transcriptional activation of target genes (e.g., RELA) linked to myelomagenesis. Reciprocally, RELA transactivates PSMD14, forming a PSMD14/NSD2-RELA positive feedback loop. Remarkably, PSMD14 inhibitors enhance bortezomib sensitivity and fosters anti-myeloma synergy. PSMD14 expression is elevated in myeloma and inversely correlated with overall survival. Our study uncovers an unappreciated function of PSMD14 as an epigenetic regulator and a myeloma driver, supporting the pursuit of PSMD14 as a therapeutic target to overcome the treatment limitation of myeloma.


Assuntos
Histonas , Mieloma Múltiplo , Humanos , Histonas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Bortezomib/farmacologia , Bortezomib/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Inibidores de Proteassoma/farmacologia , Transativadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315835

RESUMO

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Acilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Transferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(36): e2406925121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39196627

RESUMO

Endosymbionts provide essential nutrients for hosts, promoting growth, development, and reproduction. However, the molecular regulation of nutrient transport from endosymbiont to host is not well understood. Here, we used bioinformatic analysis, RNA-Sequencing, luciferase assays, RNA immunoprecipitation, and in situ hybridization to show that a bacteriocyte-distributed MRP4 gene (multidrug resistance-associated protein 4) is negatively regulated by a host (aphid)-specific microRNA (miR-3024). Targeted metabolomics, microbiome analysis, vitamin B6 (VB6) supplements, 3D modeling/molecular docking, in vitro binding assays (voltage clamp recording and microscale thermophoresis), and functional complementation of Escherichia coli were jointly used to show that the miR-3024/MRP4 axis controls endosymbiont (Serratia)-produced VB6 transport to the host. The supplementation of miR-3024 increased the mortality of aphids, but partial rescue was achieved by providing an external source of VB6. The use of miR-3024 as part of a sustainable aphid pest-control strategy was evaluated by safety assessments in nontarget organisms (pollinators, predators, and entomopathogenic fungi) using virus-induced gene silencing assays and the expression of miR-3024 in transgenic tobacco. The supplementation of miR-3024 suppresses MRP4 expression, restricting the number of membrane channels, inhibiting VB6 transport, and ultimately killing the host. Under aphids facing stress conditions, the endosymbiont titer is decreased, and the VB6 production is also down-regulated, while the aphid's autonomous inhibition of miR-3024 enhances the expression of MRP4 and then increases the VB6 transport which finally ensures the VB6 homeostasis. The results confirm that miR-3024 regulates nutrient transport in the endosymbiont-host system and is a suitable target for sustainable pest control.


Assuntos
Afídeos , Homeostase , MicroRNAs , Simbiose , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Afídeos/microbiologia , Afídeos/metabolismo , Vitamina B 6/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Nutrientes/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
4.
Circ Res ; 134(1): 60-80, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38084631

RESUMO

BACKGROUND: Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS: We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-ß type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS: Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-ß type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS: PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Complexo de Endopeptidases do Proteassoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Cell ; 146(6): 969-79, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21906795

RESUMO

Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ß subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Transativadores/metabolismo , Acetilação , Restrição Calórica , Divisão Celular , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo
6.
Mol Pain ; : 17448069241260349, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795338

RESUMO

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by chronic visceral pain with a complex etiology and challenging treatment. Although accumulating evidence supports the involvement of central nervous system sensitization in the development of visceral pain, the precise molecular mechanisms remain incompletely understood. In this study, we highlight the critical regulatory role of lysine-specific demethylase 6B (KDM6B) in the anterior cingulate cortex (ACC) in chronic visceral pain. To simulate clinical IBS conditions, we utilized the neonatal maternal deprivation (NMD) mouse model. Our results demonstrated that NMD induced chronic visceral pain and anxiety-like behaviors in mice. Notably, the protein expression level of KDM6B significantly increased in the ACC of NMD mice, leading to a reduction in the expression level of H32K7me3. Immunofluorescence staining revealed that KDM6B primarily co-localizes with neurons in the ACC, with minimal presence in microglia and astrocytes. Injecting GSK-J4 (a KDM6B-specific inhibitor) into ACC of NMD mice, resulted in a significant alleviation in chronic visceral pain and anxiety-like behaviors, as well as a remarkable reduction in NR2B expression level. ChIP assay further indicated that KDM6B regulates NR2B expression by influencing the demethylation of H3K27me3. In summary, our findings underscore the critical role of KDM6B in regulating chronic visceral pain and anxiety-like behaviors in NMD mice. These insights provide a basis for further understanding the molecular pathways involved in IBS and may pave the way for targeted therapeutic interventions.

7.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099001

RESUMO

Mitochondrial dysfunction causes severe congenital cardiac abnormalities and prenatal/neonatal lethality. The lack of sufficient knowledge regarding how mitochondrial abnormalities affect cardiogenesis poses a major barrier for the development of clinical applications that target mitochondrial deficiency-induced inborn cardiomyopathies. Mitochondrial morphology, which is regulated by fission and fusion, plays a key role in determining mitochondrial activity. Dnm1l encodes a dynamin-related GTPase, Drp1, which is required for mitochondrial fission. To investigate the role of Drp1 in cardiogenesis during the embryonic metabolic shift period, we specifically inactivated Dnm1l in second heart field-derived structures. Mutant cardiomyocytes in the right ventricle (RV) displayed severe defects in mitochondrial morphology, ultrastructure and activity. These defects caused increased cell death, decreased cell survival, disorganized cardiomyocytes and embryonic lethality. By characterizing this model, we reveal an AMPK-SIRT7-GABPB axis that relays the reduced cellular energy level to decrease transcription of ribosomal protein genes in cardiomyocytes. We therefore provide the first genetic evidence in mouse that Drp1 is essential for RV development. Our research provides further mechanistic insight into how mitochondrial dysfunction causes pathological molecular and cellular alterations during cardiogenesis.


Assuntos
Dinaminas , Proteínas Ribossômicas , Animais , Dinaminas/genética , Dinaminas/metabolismo , Coração/embriologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
8.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946425

RESUMO

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.


Assuntos
MicroRNAs , Valva Tricúspide , Matriz Extracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Valva Mitral , Valva Tricúspide/anormalidades
9.
N Engl J Med ; 385(1): 46-58, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192431

RESUMO

BACKGROUND: Systemic immunoglobulin light-chain (AL) amyloidosis is characterized by deposition of amyloid fibrils of light chains produced by clonal CD38+ plasma cells. Daratumumab, a human CD38-targeting antibody, may improve outcomes for this disease. METHODS: We randomly assigned patients with newly diagnosed AL amyloidosis to receive six cycles of bortezomib, cyclophosphamide, and dexamethasone either alone (control group) or with subcutaneous daratumumab followed by single-agent daratumumab every 4 weeks for up to 24 cycles (daratumumab group). The primary end point was a hematologic complete response. RESULTS: A total of 388 patients underwent randomization. The median follow-up was 11.4 months. The percentage of patients who had a hematologic complete response was significantly higher in the daratumumab group than in the control group (53.3% vs. 18.1%) (relative risk ratio, 2.9; 95% confidence interval [CI], 2.1 to 4.1; P<0.001). Survival free from major organ deterioration or hematologic progression favored the daratumumab group (hazard ratio for major organ deterioration, hematologic progression, or death, 0.58; 95% CI, 0.36 to 0.93; P = 0.02). At 6 months, more cardiac and renal responses occurred in the daratumumab group than in the control group (41.5% vs. 22.2% and 53.0% vs. 23.9%, respectively). The four most common grade 3 or 4 adverse events were lymphopenia (13.0% in the daratumumab group and 10.1% in the control group), pneumonia (7.8% and 4.3%, respectively), cardiac failure (6.2% and 4.8%), and diarrhea (5.7% and 3.7%). Systemic administration-related reactions to daratumumab occurred in 7.3% of the patients. A total of 56 patients died (27 in the daratumumab group and 29 in the control group), most due to amyloidosis-related cardiomyopathy. CONCLUSIONS: Among patients with newly diagnosed AL amyloidosis, the addition of daratumumab to bortezomib, cyclophosphamide, and dexamethasone was associated with higher frequencies of hematologic complete response and survival free from major organ deterioration or hematologic progression. (Funded by Janssen Research and Development; ANDROMEDA ClinicalTrials.gov number, NCT03201965.).


Assuntos
Anticorpos Monoclonais/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/administração & dosagem , Ciclofosfamida/administração & dosagem , Dexametasona/administração & dosagem , Intervalo Livre de Doença , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/mortalidade , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
10.
J Transl Med ; 22(1): 18, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178198

RESUMO

OBJECT: Patients with type 2 diabetes mellitus (T2DM) are at higher risk of developing atherosclerosis. Previous studies have analyzed the factors associated with diabetic macrovascular disease, although whether these factors are applicable to T2DM patients with carotid atherosclerosis remains unclear. Therefore, the aim of this study was to investigate the risk factors for the formation of carotid atherosclerotic plaque in hospitalized T2DM patients and to provide a theoretical basis for early prevention and treatment of carotid atherosclerosis in these patients. METHODS: A total of 949 patients with T2DM were included in the study. Carotid ultrasound identified 531 patients with carotid atherosclerotic plaque. The waist-to-hip ratio (WHR), blood glucose, liver and kidney function, blood lipid profile, islet function, and other indicators were measured at the same time to identify the risk factors and predictive significance of T2DM carotid plaque. RESULTS: The proportions of men, diabetes nephropathy (DN) and hypertension in T2DM patients with carotid plaque are higher than those without carotid plaque(P < 0.05). Age, duration of diabetes, WHR, Postprandial glucose (PPG), lipoprotein (a) [Lip (a)], carcinoembryonic antigen(CEA) and estimated glomerular filtration rate (eGFR) in T2DM patients with carotid plaque were higher than those without plaque (P < 0.05). Age, WHR, duration of diabetes, hypertension, males, and Lip (a) were independent risk factors for T2DM patients with carotid plaque. Age, WHR, duration of diabetes, and Lip (a) had a higher AUC to predict T2DM with carotid artery plaque (AUC: 0.750, 0.640, 0.678, 0.552 respectively; P all < 0.001). After constructing the logit (P) value of the above risk factors, the area under the ROC curve was 0.816 (0.789-0.842, P < 0.001). CONCLUSION: Age, WHR, duration of diabetes, hypertension, males, and Lip (a) levels are the main risk factors for the formation of carotid plaque in T2DM patients. Combining the above risk factors provides a better prediction of carotid plaque formation in T2DM.


Assuntos
Doenças das Artérias Carótidas , Diabetes Mellitus Tipo 2 , Hipertensão , Placa Aterosclerótica , Masculino , Humanos , Diabetes Mellitus Tipo 2/complicações , Placa Aterosclerótica/complicações , Fatores de Risco , Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/complicações , Hipertensão/complicações , Espessura Intima-Media Carotídea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA