Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Anal Bioanal Chem ; 416(10): 2493-2501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451276

RESUMO

Exposure to poly- and perfluoroalkyl substances (PFASs) can result in bioaccumulation. Initial findings suggested that PFASs could accumulate in tissues rich in both phospholipids and proteins. However, our current understanding is limited to the average concentration of PFASs or phospholipid content across entire tissue matrices, leaving unresolved the spatial variations of lipid metabolism associated with PFOA in zebrafish tissue. To address gap, we developed a novel methodology for concurrent spatial profiling of perfluorooctanoic acid (PFOA) and individual phospholipids within zebrafish hepatic tissue sections, utilizing matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-MSI). 5-diaminonapthalene (DAN) matrix and laser sensitivity of 50.0 were optimized for PFOA detection in MALDI-TOF-MSI analysis with high spatial resolution (25 µm). PFOA was observed to accumulate within zebrafish liver tissue. H&E staining results corroborating the damage inflicted by PFOA accumulation, consistent with MALDI MSI results. Significant up-regulation of 15 phospholipid species was observed in zebrafish groups exposed to PFOA, with these phospholipid demonstrating varied spatial distribution within the same tissue. Furthermore, co-localized imaging of distinct phospholipids and PFOA within identical tissue sections suggested there could be two distinct potential interactions between PFOA and phospholipids, which required further investigation. The MALDI-TOF-IMS provides a new tool to explore in situ spatial distributions and variations of the endogenous metabolites for the health risk assessment and ecotoxicology of emerging environmental pollutants.


Assuntos
Caprilatos , Fluorocarbonos , Perciformes , Animais , Fosfolipídeos/análise , Peixe-Zebra , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fígado/química , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
2.
Environ Sci Pollut Res Int ; 31(10): 14537-14552, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308167

RESUMO

Constructed wetland substrates (CWSs) have received considerable attention owing to their importance in adsorbing and degrading pollutants, providing growth attachment points for microorganisms, and supporting wetland plants. There are differences in the configurations and functions of constructed wetlands (CWs) for treating different water bodies and sewage, resulting in a wide variety of substrates. Research on the application and mechanism of CWSs is not sufficiently systematic. Therefore, the current research advancements and hotspots must be identified. Hence, we used CiteSpace to analyze 1955 English publications from the core collection database of the Web of Science to assess the current state of the CWS research field. Based on the cooperative network analysis, the roles of various countries, institutions, and authors in research on CWSs were reviewed. Keyword co-occurrence and cluster analyses were used to discuss the transformation of CWSs from removing traditional pollutants to emerging pollutants and the transition from incorporating natural substrates to artificial substrates. Finally, we underscored the need for more emphasis to be placed on the collocation and application of the CWSs at different latitudes. Furthermore, the substrate micro-interface process and its effects on the interaction patterns of pollutants and microorganisms should be thoroughly investigated to provide theoretical guidance for the development of wetland applications and mechanisms.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Humanos , Análise por Conglomerados , Bases de Dados Factuais , Esgotos
3.
Front Bioeng Biotechnol ; 12: 1303670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390364

RESUMO

Antibiotics are an important pharmaceutical class excessively used by humans. Its presence in the soil can impact plant growth and induce antibiotic resistance. This research studies the effect of sulfamethoxazole (SMX) on plant growth, rhizosphere bacteria composition, and resistance genes. Two sets of vegetables (basil, cilantro, and spinach) were treated separately with water and SMX solution. The plant growth data and soil samples were collected and analyzed. The results revealed that SMX increased spinach leaf length (34.0%) while having no significant impacts on basil and cilantro. On the other hand, SMX improved the bacterial diversity in all samples. The shifts in the abundance of plant growth-promoting bacteria could indirectly affect vegetable stem and leaf length. SMX also significantly increased the abundance of resistance genes Sul1 and Sul2. A further study into the correlation between bacteria highlights the importance of Shingomonas and Alfipia for inhibiting the spread of key resistance gene hosts, namely, Pseudomonas, Stenotrophomonas, and Agrobacterium. This research provides insight into SMX's impact on vegetable growth and microbial diversity. It also points out important microbial interactions that could potentially be utilized to mitigate ARG proliferation.

4.
Signal Transduct Target Ther ; 9(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594257

RESUMO

G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Estados Unidos , Humanos , Receptores Acoplados a Proteínas G/química , Sítio Alostérico , Desenho de Fármacos , Ligantes
5.
Environ Sci Process Impacts ; 26(4): 700-709, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38376352

RESUMO

Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant. Exposure to PFOA was observed to have a correlation with the expression levels of phospholipids. However, there are currently no studies that directly visualize the effects of PFOA on phospholipids. To this end, matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-IMS) was used to visualize changes in phospholipids in the different tissues of zebrafish following exposure to PFOA. This study found that the major perturbed phospholipids were phosphatidylcholine (PC), diacylglycerol (DG), phosphatidic acid (PA), phosphatidylglycerol (PG), sphingomyelin (SM), and triacylglycerol (TG). These perturbed phospholipids caused by PFOA were reversible in some tissues (liver, gill, and brain) and irreversible in others (such as the highly exposed intestine). Moreover, the spatial distribution of perturbed phospholipids was mainly located around the edge or center of the tissues, implying that these tissue regions need special attention. This study provides novel insight into the biological toxicity and toxicity mechanisms induced by emerging environmental pollutants.


Assuntos
Caprilatos , Fluorocarbonos , Fosfolipídeos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fluorocarbonos/metabolismo , Fosfolipídeos/metabolismo , Caprilatos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Sci Total Environ ; : 175530, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147041

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are highly concerning environmental pollutants due to their toxicity, persistence, and bioaccumulation. In this paper, concentrations and compositions of 16 United States Environmental Protection Agency (USEPA) priority control PAHs in the fish collected from four lakes in central and eastern China were analyzed. 18 species of fish were collected from four typical lakes, namely Taihu Lake, Danjiangkou Reservoir, Yuncheng Salt Lake, and Nansi Lake. Quantitative analysis of PAHs were carried out with gas chromatograph/mass spectrometer, and 13 out of 16 PAHs were identified, with the main components being pyrene, chrysene, naphthalene, and benzo(b)fluoranthene. The accumulation of PAHs in fish from Taihu Lake, Danjiangkou Reservoir, Yuncheng Salt Lake, and Nansi Lake was 28.75-47.27, 26.60-31.93, 33.56-39.30, and 27.22-43.01 ng·g-1, respectively. The toxic equivalents of high-cyclic PAHs in fish of the four lakes were significantly higher than those of low-cyclic and middle-cyclic PAHs (P < 0.05). In Taihu Lake, Danjiangkou Reservoir, and Nansi Lake, the toxicity equivalents were predominantly contributed by benzo[a] pyrene (BaP), while in Yuncheng Salt Lake, dibenzo(a,h) anthracene (DahA) was the main contributor. The residents in central and eastern China exposed to PAHs had a negligible non-cancer risk (non-carcinogenic risk values <1) and a potential low cancer risk. It was noteworthy that the Pleuronichthys cornutus and Lateolabrax japonicus from Yuncheng Salt Lake could pose carcinogenic risks (>10-4) to humans, with benzo[b]fluoranthene (BbF) having the highest risk contribution rate. Source analysis indicated that the main source of PAHs in fish was combustion sources. BaP, DahA, and BbF could become potential pollutants of concern in the field of ecotoxicology. The results of this study on PAHs bioaccumulation, pollution characteristics, sources and health risks in fish from four lakes would provide a scientific basis for local governments to formulate targeted environmental management policies, pollution control measures, and public health strategies.

7.
Huan Jing Ke Xue ; 45(3): 1402-1414, 2024 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-38471856

RESUMO

In this study, surface sediment samples were collected from Dongting Lake, Honghu Lake, and Chihu Lake, and the concentrations of 10 heavy metals were measured. Then, the potential risk of heavy metal accumulation was evaluated using the cumulative pollution index (Igeo), the enrichment factor (EF), and the potential ecological risk index (RI), and the sources were traced using correlation analysis (Pearson) and principal component analysis (PCA). The results showed that the pollution and potential ecological risk of Cd were the most serious. The mean values of Cd in East Dongting Lake, Honghu Lake, and Chihu Lake were 2.85, 1.59, and 3.57 mg·kg-1, respectively. The concentrations of Cd were 25.87, 11.36, and 37.58 times higher than the soil background values of the corresponding provinces, which exceeded the risk screening value (0.6 mg·kg-1). Particularly, the Cd concentration of Chihu Lake exceeded the risk control value (3.0 mg·kg-1). Besides Cd, the concentration of As in Honghu Lake was also of concern. At the same time, the Cu, As, Zn, and Pb in Chihu Lake should not be neglected. The potential ecological risks of the three lakes were ranked as follows:Chihu Lake (RI=1 127)>East Dongting Lake (RI=831)>Honghu Lake (RI=421). The primary sources of heavy metals were industrial mining, agricultural production, and aquaculture, and some heavy metals (Mn and Cu) were from natural sources. This study was of great significance for the prevention and control of heavy metals in the sediments of typical lakes in the middle reaches of the Yangtze River.

8.
Chemosphere ; 355: 141788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548088

RESUMO

N/S co-doping has emerged as a prevailing strategy for carbon-based adsorbents to facilitate the antibiotic removal efficiency. Nevertheless, the underlying interplay among N, S, and their adjacent vacancy defects remains overlooked. Herein, we present a novel in situ strategy for fabricating pyridinic-N dominated and S dual-doped porous carbon adsorbent with rich vacancy defects (VNSC). The experimental results revealed that N (acting as the electron donor) and S (acting as the electron acceptor) form an internal electric field (IEF), with a stronger IEF generated between pyridinic-N and S, while their adjacent vacancy defects activate carbon π electrons, thus enhancing the charge transfer of the IEF. Density functional theory (DFT) calculations further demonstrated that the rich charge transfer in the IEF facilitated the π-π electron donor-acceptor (EDA) interaction between VNSC and tetracycline (TC) as well as norfloxacin (NOR), and thus is the key to adsorption performance of VNSC. Consequently, VNSC exhibited high adsorption capacities toward TC (573.1 mg g-1) and NOR (517.0 mg g-1), and its potential for environmental applications was demonstrated by interference, environmentally relevant concentrations, fixed-bed column, and regeneration tests. This work discloses the natures of adsorption capacity for N/S dual-doped carbon-based materials for antibiotics.


Assuntos
Antibacterianos , Norfloxacino , Porosidade , Tetraciclina , Adsorção , Carbono , Oxidantes
9.
J Hazard Mater ; 463: 132802, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37922584

RESUMO

Improvements in plant activity and functional microbial communities are important to ensure the stability and efficiency of pollutant removal measures in cold regions. Although electrochemistry is known to accelerate pollutant degradation, cold stress acclimation of plants and the stability and activity of plant-microbial synergism remain poorly understood. The sulfamethoxazole (SMX) removal, iron plaque morphology, plant activity, microbial community, and function responses were investigated in an electrolysis-integrated ecological floating bed (EFB) at 6 ± 2 â„ƒ. Electrochemistry significantly improved SMX removal and plant activity. Dense and uniform iron plaque was found on root surfaces in L-E-Fe which improved the plant adaptability at low temperatures and provided more adsorption sites for bacteria. The microbial community structure was optimized and the key functional bacteria for SMX degradation (e.g., Actinobacteriota, Pseudomonas) were enriched. Electrochemistry improves the relative abundance of enzymes related to energy metabolism, thereby increasing energy responses to SMX and low temperatures. Notably, electrochemistry improved the expression of target genes (sadB and sadC, especially sadC) involved in SMX degradation. Electrochemistry enhances hydrogen bonding and electrostatic interactions between SMX and sadC, thereby enhancing SMX degradation and transformation. This study provides a deeper understanding of the electrochemical stability of antibiotic degradation at low temperatures.


Assuntos
Poluentes Ambientais , Sulfametoxazol , Ferro , Temperatura , Bactérias/genética , Plantas , Eletrólise , Antibacterianos/farmacologia
10.
Sci Total Environ ; 927: 172155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575028

RESUMO

As of 2022, China's rural sewage treatment rate is only approximately 31 %. Rapid rural development has led to higher demand. However, China's rural areas are complex and face many problems, such as uneven economic development, population distribution, and water availability. Long-lasting and low-cost wastewater treatment measures are needed for application in rural areas. The quantity and quality of rural domestic wastewater in China were characterized first. Next, the hot topic of domestic wastewater in Chinese villages was confirmed via bibliometric analysis using CiteSpace, and the treatment technologies for rural domestic wastewater were compared. Specifically, the technical status and challenges of the most common technology in rural domestic wastewater treatment, constructed wetlands, were summarized.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , China , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Áreas Alagadas
11.
ACS Nano ; 18(9): 6896-6907, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38376996

RESUMO

Microscale patterning of colloidal perovskite nanocrystals (NCs) is essential for their integration in advanced device platforms, such as high-definition displays. However, perovskite NCs usually show degraded optical and/or electrical properties after patterning with existing approaches, posing a critical challenge for their optoelectronic applications. Here we achieve nondestructive, direct optical patterning of perovskite NCs with rationally designed carbene-based cross-linkers and demonstrate their applications in high-performance light-emitting diodes. We reveal that both the photochemical properties and the electronic structures of cross-linkers need to be carefully tailored to the material properties of perovskite NCs. This method produces high-resolution (∼4000 ppi) NC patterns with preserved photoluminescent quantum efficiencies and charge transport properties. Prototype light-emitting diodes with patterned/cross-linked NC layers show a maximum luminance of over 60000 cd m-2 and a peak external quantum efficiency of 16%, among the highest for patterned perovskite electroluminescent devices. Such a material-adapted patterning method enabled by designs from a photochemistry perspective could foster the applications of perovskite NCs in system-level electronic and optoelectronic devices.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38154657

RESUMO

Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.


Assuntos
Toxinas Marinhas , Microcistinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microcistinas/toxicidade , Larva , Arginina/metabolismo
13.
Acta Pharm Sin B ; 14(3): 1302-1316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487000

RESUMO

Pancreatic cancer, one of the most aggressive malignancies, has no effective treatment due to the lack of targets and drugs related to tumour metastasis. SIRT6 can promote the migration of pancreatic cancer and could be a potential target for antimetastasis of pancreatic cancer. However, highly selective and potency SIRT6 inhibitor that can be used in vivo is yet to be discovered. Here, we developed a novel SIRT6 allosteric inhibitor, compound 11e, with maximal inhibitory potency and an IC50 value of 0.98 ± 0.13 µmol/L. Moreover, compound 11e exhibited significant selectivity against other histone deacetylases (HADC1‒11 and SIRT1‒3) at concentrations up to 100 µmol/L. The allosteric site and the molecular mechanism of inhibition were extensively elucidated by cocrystal complex structure and dynamic structural analyses. Importantly, we confirmed the antimetastatic function of such inhibitors in four pancreatic cancer cell lines as well as in two mouse models of pancreatic cancer liver metastasis. To our knowledge, this is the first study to reveal the in vivo effects of SIRT6 inhibitors on liver metastatic pancreatic cancer. It not only provides a promising lead compound for subsequent inhibitor development targeting SIRT6 but also provides a potential approach to address the challenge of metastasis in pancreatic cancer.

14.
Nat Commun ; 15(1): 2920, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575569

RESUMO

Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.

15.
J Hazard Mater ; 473: 134572, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772106

RESUMO

The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.


Assuntos
COVID-19 , Máscaras , Modelos Teóricos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias , Microplásticos/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA