Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 150(3): 521-32, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863006

RESUMO

To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.


Assuntos
Embrião não Mamífero/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Blastômeros/metabolismo , Ciclo Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/citologia , Feminino , Humanos , Insetos/citologia , Insetos/embriologia , Insetos/metabolismo , Masculino , Mamíferos/embriologia , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fuso Acromático/metabolismo , Peixe-Zebra/metabolismo , Zigoto/citologia , Zigoto/metabolismo
2.
Diabetes Obes Metab ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747214

RESUMO

Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.

3.
Diabetes Obes Metab ; 26(3): 809-819, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100156

RESUMO

Metabolic diseases have become a major threat to human health worldwide as a result of changing lifestyles. The exploration of the underlying molecular mechanisms of metabolic diseases and the development of improved therapeutic methods have been hindered by the lack of appropriate human experimental models. Organoids are three-dimensional in vitro models of self-renewing cells that spontaneously self-organize into structures similar to the corresponding in vivo tissues, recapitulating the original tissue function. Off-body organoid technology has been successfully applied to disease modelling, developmental biology, regenerative medicine, and tumour precision medicine. This new generation of biological models has received widespread attention. This article focuses on the construction process and research progress with regard to organoids related to metabolic diseases in recent years, and looks forward to their prospective applications.


Assuntos
Doenças Metabólicas , Neoplasias , Humanos , Organoides/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Medicina de Precisão , Doenças Metabólicas/terapia , Doenças Metabólicas/metabolismo
4.
Anal Chem ; 95(2): 1280-1286, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574347

RESUMO

The detection of circulating tumor microRNAs (miRNAs) holds great promise for the noninvasive and early-stage diagnosis of cancer. However, the low abundance of lung cancer-related miRNAs and the false-positive results of single miRNA detection limited the development of strip-based point-of-care testing methods in clinic. We developed a duplex-specific nuclease (DSN)-mediated and dual-AND logic gate-based triple-line lateral flow strip detection system for the rapid and simultaneous detection of four miRNAs of lung cancer in a single strip test. This system combines DSN-mediated signal amplification with AND logic gate-based simple signal output. Meanwhile, the limit of detection of this platform was calculated to be 26.51 fM. Furthermore, this assay was used to detect lung cancer-related miRNAs from serum in a homogeneous and separation-free format, which could discriminate lung cancer patients from healthy individuals with an accuracy of 100%. Our approach provides a simple and easy-to-handle method for the diagnosis of lung cancer in clinic.


Assuntos
Técnicas Biossensoriais , MicroRNA Circulante , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
PLoS Genet ; 16(4): e1008652, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32267837

RESUMO

Forward genetic screens remain at the forefront of biology as an unbiased approach for discovering and elucidating gene function at the organismal and molecular level. Past mutagenesis screens targeting maternal-effect genes identified a broad spectrum of phenotypes ranging from defects in oocyte development to embryonic patterning. However, earlier vertebrate screens did not reach saturation, anticipated classes of phenotypes were not uncovered, and technological limitations made it difficult to pinpoint the causal gene. In this study, we performed a chemically-induced maternal-effect mutagenesis screen in zebrafish and identified eight distinct mutants specifically affecting the cleavage stage of development and one cleavage stage mutant that is also male sterile. The cleavage-stage phenotypes fell into three separate classes: developmental arrest proximal to the mid blastula transition (MBT), irregular cleavage, and cytokinesis mutants. We mapped each mutation to narrow genetic intervals and determined the molecular basis for two of the developmental arrest mutants, and a mutation causing male sterility and a maternal-effect mutant phenotype. One developmental arrest mutant gene encodes a maternal specific Stem Loop Binding Protein, which is required to maintain maternal histone levels. The other developmental arrest mutant encodes a maternal-specific subunit of the Minichromosome Maintenance Protein Complex, which is essential for maintaining normal chromosome integrity in the early blastomeres. Finally, we identify a hypomorphic allele of Polo-like kinase-1 (Plk-1), which results in a male sterile and maternal-effect phenotype. Collectively, these mutants expand our molecular-genetic understanding of the maternal regulation of early embryonic development in vertebrates.


Assuntos
Divisão Celular/genética , Desenvolvimento Embrionário/genética , Herança Materna/genética , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Alelos , Animais , Blástula/citologia , Blástula/embriologia , Blástula/metabolismo , Padronização Corporal/genética , Núcleo Celular , Citocinese/genética , Feminino , Infertilidade Masculina/genética , Masculino , Mutagênese , Fenótipo , Proteínas de Peixe-Zebra/genética
6.
J Immunol ; 204(5): 1334-1344, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953354

RESUMO

The IL1A and IL1B genes lie in close proximity on chromosome 2 near the gene for their natural inhibitor, IL1RN Despite diverse functions, they are all three inducible through TLR4 signaling but with distinct kinetics. This study analyzed transcriptional induction kinetics, chromosome looping, and enhancer RNA production to understand the distinct regulation of these three genes in human cells. IL1A, IL1B, and IL1RN were rapidly induced after stimulation with LPS; however, IL1B mRNA production was less inhibitable by iBET151, suggesting it does not use pause-release regulation. Surprisingly, chromatin looping contacts between IL1A and IL1B were highly intermingled, although those of IL1RN were distinct, and we focused on comparing IL1A and IL1B transcriptional pathways. Our studies demonstrated that enhancer RNAs were produced from a subset of the regulatory regions, that they were critical for production of the mRNAs, and that they bound a diverse array of RNA binding proteins, including p300 but not CBP. We, furthermore, demonstrated that recruitment of p300 was dependent on MAPKs. Integrator is another RNA binding protein recruited to the promoters and enhancers, and its recruitment was more dependent on NF-κB than MAPKs. We found that integrator and NELF, an RNA polymerase II pausing protein, were associated with RNA in a manner that facilitated interaction. We conclude that IL1A and IL1B share many regulatory contacts, signaling pathways, and interactions with enhancer RNAs. A complex of protein interactions with enhancer RNAs emphasize the role of enhancer RNAs and the overall structural aspects of transcriptional regulation.


Assuntos
Proteína p300 Associada a E1A/imunologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Proteínas de Ligação a RNA/imunologia , Transcrição Gênica , Linhagem Celular , Proteína p300 Associada a E1A/genética , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1alfa/genética , Interleucina-1beta/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia
7.
Stem Cells ; 38(10): 1332-1347, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32535942

RESUMO

Osteoblast differentiation of bone marrow-derived human mesenchymal stem cells (hMSC) can be induced by stimulation with canonical Notch ligand, Jagged1, or bone morphogenetic proteins (BMPs). However, it remains elusive how these two pathways lead to the same phenotypic outcome. Since Runx2 is regarded as a master regulator of osteoblastic differentiation, we targeted Runx2 with siRNA in hMSC. This abrogated both Jagged1 and BMP2 mediated osteoblastic differentiation, confirming the fundamental role for Runx2. However, while BMP stimulation increased Runx2 and downstream Osterix protein expression, Jagged1 treatment failed to upregulate either, suggesting that canonical Notch signals require basal Runx2 expression. To fully understand the transcriptomic profile of differentiating osteoblasts, RNA sequencing was performed in cells stimulated with BMP2 or Jagged1. There was common upregulation of ALPL and extracellular matrix genes, such as ACAN, HAS3, MCAM, and OLFML2B. Intriguingly, genes encoding components of Notch signaling (JAG1, HEY2, and HES4) were among the top 10 genes upregulated by both stimuli. Indeed, ALPL expression occurred concurrently with Notch activation and inhibiting Notch activity for up to 24 hours after BMP administration with DAPT (a gamma secretase inhibitor) completely abrogated hMSC osteoblastogenesis. Concordantly, RBPJ (recombination signal binding protein for immunoglobulin kappa J region, a critical downstream modulator of Notch signals) binding could be demonstrated within the ALPL and SP7 promoters. As such, siRNA-mediated ablation of RBPJ decreased BMP-mediated osteoblastogenesis. Finally, systemic Notch inhibition using diabenzazepine (DBZ) reduced BMP2-induced calvarial bone healing in mice supporting the critical regulatory role of Notch signaling in BMP-induced osteoblastogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Adulto , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dibenzazepinas/farmacologia , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína Jagged-1/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Crânio/patologia , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Adulto Jovem
8.
Lipids Health Dis ; 20(1): 39, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879188

RESUMO

BACKGROUND: To investigate the roles of the transcription factors twist family bHLH transcription factor 1 (TWIST1), twist family bHLH transcription factor 2 (TWIST2), and peroxisome proliferator activated receptor gamma (PPARγ) in the progression of nonalcoholic steatohepatitis. METHODS: The protein levels of TWIST1, TWIST2 and PPARγ were determined in the serum of nonalcoholic fatty liver disease (NAFLD) patients and healthy controls by enzyme-linked immunosorbent assay (ELISA). An in vivo model for fatty liver was established by feeding C57BL/6 J mice a high-fat diet (HFD). An in vitro model of steatosis was established by treating LO-2 cells with oleic acid (OA). RNA sequencing was performed on untreated and OA-treated LO-2 cells followed by TWIST1, TWIST2 and PPARγ gene mRNA levels analysis, Gene Ontology (GO) enrichment and pathway analysis. RESULTS: The TWIST2 serum protein levels decreased significantly in all fatty liver groups (P < 0.05), while TWIST1 varied. TWIST2 tended to be lower in mice fed an HFD and was significantly lower at 3 months. Similarly, in the in vitro model, the TWIST2 protein level was downregulated significantly at 48 and 72 h after OA treatment. RNA sequencing of LO-2 cells showed an approximately 2.3-fold decrease in TWIST2, with no obvious change in TWIST1 and PPARγ. The PPAR signaling pathway was enriched, with 4 genes upregulated in OA-treated cells (P = 0.0018). The interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways were enriched in OA-treated cells. CONCLUSIONS: The results provide evidence that the TWIST2 and PPAR signaling pathways are important in NAFLD and shed light on a potential mechanism of steatosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína 1 Relacionada a Twist/metabolismo , Adolescente , Adulto , Animais , Western Blotting , Estudos de Casos e Controles , Linhagem Celular , Notificação de Doenças , Progressão da Doença , Feminino , Teste de Tolerância a Glucose , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/sangue , Proteínas Nucleares/metabolismo , PPAR gama/sangue , Proteínas Repressoras/sangue , Proteína 1 Relacionada a Twist/sangue , Adulto Jovem
9.
Cell Physiol Biochem ; 42(3): 1165-1176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668964

RESUMO

BACKGROUND/AIMS: The aim of this study was to determine the direct role of liraglutide (LG) in adipogenesis and lipid metabolism. METHODS: Lipid accumulation was evaluated by oil red O staining, quantitative real-time PCR (qPCR) was performed to determine glucagon-like peptide 1 receptor (GLP-1R), fatty acid synthase (FASN) and adipose triglyceride lipase (ATGL) expression in 3T3-L1 preadipocytes, differentiated adipocytes and in adipose tissues from mice. The effects of LG on 3T3-L1 adipogenesis and lipid metabolism were analyzed with qPCR, Western Blotting, oil red O staining, immunohistochemistry (IHC) and immunofluorescence (IF). All measurements were performed at least three times. RESULTS: LG increased the expression of differentiation marker genes and lipid accumulation during preadipocyte differentiation. In differentiated adipocytes, LG decreased FASN expression, and simultaneously led to CREB phosphorylation and ERK1/2 activation which were abolished by a GLP-1R antagonist, exendin (9-39). LG induced-FASN down-regulation was partially reversed by PKA and ERK1/2 inhibitors. Consistent with above in vitro findings, LG treatment significantly reduced FASN expression in visceral adipose tissues of ob/ob mice, and reduced body weight gain. CONCLUSION: LG promotes preadipocytes differentiation, and inhibits FASN expression in adipocytes. LG induced down-regulation of FASN is at least partially mediated by PKA and MAPK signaling pathways.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Lipogênese/efeitos dos fármacos , Liraglutida/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos
10.
Med Sci Monit ; 23: 65-70, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28055991

RESUMO

BACKGROUND Cardiac fibrosis after primary infarction is a type of pathological phenomena as shown by increased collagen in myocardial cells. Transforming growth factor (TGF)-ß1 is a critical factor participating in myocardial fibrosis. A previous study has shown the inhibitory role on TGF-ß1 by microRNA-24 (miR-24) via targeting Furin. This study thus investigated the role of miR-24 and Furin/TGF-ß1 in rat myocardial fibrosis. MATERIAL AND METHODS A total of 40 adult SD rats (both males and females) were prepared for myocardial infarction model by ligating the descending branch of left coronary artery after anesthesia. HE staining was performed to observe myocardial fibrosis after 1, 2, and 4 weeks. Tissue RNA was extracted to detect mRNA levels of Furin, TGF-ß1, and miR-24 by real-time PCR. Western blotting was used to quantify protein expression of Furin and TGF-ß1 in myocardial tissues. RESULTS Increased connective tissues were observed in myocardial tissues at 4 weeks after infarction by HE staining, which also revealed widening of the intra-myocardial cleft, along with more inflammatory cells and fibroblast hypertrophy. miR-24 expression was significantly depressed at 2 and 4 weeks after cardiac infarction (p<0.05). mRNA levels of Furin and TGF-ß1 were elevated after infarction (p<0.05). With prolonged time periods of myocardial infarction, protein levels of Furin and TGF-ß1 were further increased. The level of miR-24 was positively correlated with left ventricular end-diastolic diameter, left ventricular systolic diameter, and left ventricular ejection fraction. However, the level of Furin or TGF-ß1 was negatively correlated with the above parameters. CONCLUSIONS This study demonstrated the important role of abnormal expression of miR-24 in myocardial fibrosis after infarction, and may provide drug targets for treating myocardial fibrosis.


Assuntos
Furina/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Furina/genética , Masculino , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo
11.
Diabetologia ; 59(11): 2360-2368, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539148

RESUMO

AIMS/HYPOTHESIS: One of the most strongly associated type 2 diabetes loci reported to date resides within the TCF7L2 gene. Previous studies point to the T allele of rs7903146 in intron 3 as the causal variant at this locus. We aimed to identify the actual gene(s) under the influence of this variant. METHODS: Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease, we generated a 1.4 kb deletion of the genomic region harbouring rs7903146 in the HCT116 cell line, followed by global gene expression analysis. We then carried out a combination of circularised chromosome conformation capture (4C) and Capture C in cell lines, HCT116 and NCM460 in order to ascertain which promoters of these perturbed genes made consistent physical contact with this genomic region. RESULTS: We observed 99 genes with significant differential expression (false discovery rate [FDR] cut-off:10%) and an effect size of at least twofold. The subsequent promoter contact analyses revealed just one gene, ACSL5, which resides in the same topologically associating domain as TCF7L2. The generation of additional, smaller deletions (66 bp and 104 bp) comprising rs7903146 showed consistently reduced ACSL5 mRNA levels across all three deletions of up to 30-fold, with commensurate loss of acyl-CoA synthetase long-chain family member 5 (ACSL5) protein. Notably, the deletion of this single-nucleotide polymorphism region abolished significantly detectable chromatin contacts with the ACSL5 promoter. We went on to confirm that contacts between rs7903146 and the ACSL5 promoter regions were conserved in human colon tissue. ACSL5 encodes ACSL5, an enzyme with known roles in fatty acid metabolism. CONCLUSIONS/INTERPRETATION: This 'variant to gene mapping' effort implicates the genomic location harbouring rs7903146 as a regulatory region for ACSL5.


Assuntos
Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Western Blotting , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Colo/metabolismo , Células HCT116 , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Cell Physiol Biochem ; 39(6): 2135-2148, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802441

RESUMO

BACKGROUND: Adipogenesis of adipocytes includes two stages: initiation and maturation. Growth hormone (GH) secretion is decreased in obese subjects and GH levels are inversely correlated with abdominal fat mass. The effects of growth hormone (GH) on lipids accumulation or maturation of adipocytes remains elusive. METHODS: In the present study, effect of GH on lipid accumulation in vitro and in vivo was examined. cDNA microarray, quantitative real time-PCR (qPCR) and western blotting was used to analyze the expression of genes related to adipocyte lipid accumulation or degradation in pre- or mature 3T3-F442A adipocytes treated with GH and in epididymal adipose tissue of C57BL/6 mice administrated with GH. Level of adiponectin in supernatants of cultured F442A adipocytes was determined by enzyme-linked immune-sorbent assay. RESULTS: We found that in 3T3-F442A especially 6 days post initiation of adipogenesis, GH intervention resulted in decreased expression of adipocyte maturation regulators (C/EBPα, PPARγ) and prominent genes related to lipid synthesis such as FAS and FABP, while the expression of UCP1 was markedly enhanced. cDNA microarray analysis and qPCR showed that the expression of SOCS2 and Adipor2 was increased under GH-treatment in mature 3T3-F442A adipocytes. GH treatment increased the mRNA expression of adiponectin and UCP1 in mature adipocytes. The above results were confirmed by in vivo study. CONCLUSIONS: GH potentially negatively modulates the maturation and accumulation of lipid in adipocytes.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Células 3T3 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adiponectina/metabolismo , Animais , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Ensaio de Imunoadsorção Enzimática , Ácido Graxo Sintases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Lipólise/efeitos dos fármacos , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Lipids Health Dis ; 15(1): 189, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825360

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. METHODS: We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. RESULTS: The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 µM, 24 h) and down-regulation of Twist 1 under T0070907 (100 µM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. CONCLUSIONS: There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Proteínas Nucleares/biossíntese , PPAR gama/biossíntese , Proteína 1 Relacionada a Twist/biossíntese , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Benzamidas/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas Nucleares/agonistas , Proteínas Nucleares/genética , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Pioglitazona , Piridinas/administração & dosagem , Tiazolidinedionas/administração & dosagem , Proteína 1 Relacionada a Twist/agonistas , Proteína 1 Relacionada a Twist/genética
14.
J Cell Physiol ; 230(9): 2233-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25655684

RESUMO

TSH/TSHR signaling plays a role in the regulation of lipid metabolism in adipocytes. However, the precise mechanisms are not known. In the present study, we determined the effect of TSH on fatty acid synthase (FASN) expression, and explored the underlying mechanisms. In vitro, TSH reduced FASN expression in both mRNA and protein levels in mature adipocytes and was accompanied by protein kinase A (PKA) activation, cAMP-response element binding protein (CREB) phosphorylation, as well as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2 -terminal kinase (JNK) activation. TSH-induced downregulation of FASN was partially abolished by inhibition of PKA and ERK, but not JNK. TSHR and FASN expression in visceral tissue was significantly increased in C57BL/6 mice with diet-induced obesity compared with control animals, whereas thyroid TSHR expression was normal. These findings suggest that activation of TSHR directly inhibits FASN expression in mature adipocytes, possibly mediated by PKA and ERK. In obese animals, this function of TSHR seems to be counteracted. The precise mechanisms need further investigation.


Assuntos
Adipócitos/metabolismo , Ácido Graxo Sintase Tipo I/genética , Obesidade/enzimologia , Receptores da Tireotropina/metabolismo , Tireotropina/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Obesidade/patologia , Fosforilação , RNA Mensageiro/biossíntese , Receptores da Tireotropina/genética , Transdução de Sinais/genética , Glândula Tireoide/metabolismo , Tireotropina/genética
15.
Clin Lab ; 61(12): 1927-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26882817

RESUMO

BACKGROUND: To establish a technical system for assessing liver reserve function based on spectrophotometry by detection of phenacetin and paracetamol in blood samples. METHODS: Taking detected contents of phenacetin and paracetamol by high performance liquid chromatography (HPLC) as standard, which was proved to be able to detect drug concentrations with high resolution and accuracy, we established a technical system based on the spectrophotometric technique to assay phenacetin and paracetamol, including the color system, the maximum absorption wavelength, the influence factors of color system, and the optimal conditions for hydrolysis. Then we verified our established system compared with that under HPLC by recovery test. RESULTS: This study established a technical system to detect phenacetin and paracetamol in blood samples using spectrophotometry. Mainly, 3 mol/L hydrochloric acid (HCl) was added to samples for hydrolysis for 30 minutes, then, adding 0.02% 1,2-naphthoquinone-4-sulfonate (NQS), 1% cetyltrimethyl ammonium bromide (CTA) and 2% sodium hydroxide (or 3% sodium carbonate) (ratio of 1:6:1:2 or 3), and the absorbance was measured at 500 nm and 570 nm to calculate their concentrations. CONCLUSIONS: Using an established spectrophotometric system to detect phenacetin and paracetamol in blood samples could assess liver reserve function, which was proved comparable with HPLC in resolution and repeatability.


Assuntos
Acetaminofen/sangue , Fígado/fisiologia , Fenacetina/sangue , Espectrofotometria/métodos , Cromatografia Líquida de Alta Pressão , Humanos , Concentração de Íons de Hidrogênio , Temperatura
16.
Lipids Health Dis ; 13: 132, 2014 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-25128964

RESUMO

BACKGROUND: Twist 1 is highly expressed in adipose tissue and has been associated with obesity and related disorders. However, the molecular function of Twist 1 in adipose tissue is unclear. Twist 1 has been implicated in cell lineage determination and differentiation. Therefore, we investigated both the role of Twist 1 in adipocyte precursor mobilization and the relationship of Twist 1 with other molecular determinants of adipocyte differentiation. METHODS: We examined Twist 1 mRNA and protein expression in subcutaneous adipose tissues from diet-induced obese C57/BL6 mice and Wistar rats and in obese patients undergoing liposuction or adipose transplant surgeries. Twist 1 expression was measured on days 0, 2, 4, 8, and 12 of 3T3-L1 differentiation in vitro. The role of Twist 1 in adipogenesis was explored using retroviral interference of Twist 1 expression. Adipokine secretion was evaluated using a RayBio® Biotin Label-based Adipokine Array. RESULTS: Twist 1 mRNA and protein levels were reduced in diet-induced obese mice and rats and in obese humans. Twist 1 was upregulated during 3T3-L1 preadipocyte differentiation in vitro, beginning from the fourth day of differentiation induction. Retroviral interference of Twist 1 expression did not significantly impair lipid formation; however, retroviral interference induced PPARγ mRNA and protein expression on day 4 of differentiation induction. Adipokine array analyses revealed increased secretion of CXCR4 (19.55-fold), VEGFR1 (92.13-fold), L-21 R (63.55-fold), and IL-12 R beta 1 (59.66-fold) and decreased secretion of VEGFR3 (0.01-fold), TSLP R (0.071-fold), MIP-1 gamma (0.069-fold), TNF RI/TNFRSF1A (0.09-fold), and MFG-E8 (0.06-fold). CONCLUSIONS: Twist 1 is a regulator of adipocyte gene expression although it is not likely to regulate differentiation. We identified PPARγ as a potential target of Twist 1 and found variation in the secretion of multiple adipokines, which might indicate a prospective mechanism linking Twist 1 expression with obesity or associated diseases.


Assuntos
Adipócitos/fisiologia , Adipogenia , Proteínas Nucleares/fisiologia , Obesidade/metabolismo , PPAR gama/genética , Proteína 1 Relacionada a Twist/fisiologia , Células 3T3-L1 , Adipocinas/metabolismo , Animais , Regulação para Baixo , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Hormônios/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Ratos Wistar , Gordura Subcutânea/metabolismo
17.
Front Physiol ; 15: 1271874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562618

RESUMO

Metabolic syndromes are characterized by various complications caused by disrupted glucose and lipid metabolism, which are major factors affecting the health of a population. However, existing diagnostic and treatment strategies have limitations, such as the lack of early diagnostic and therapeutic approaches, variability in patient responses to treatment, and cost-effectiveness. Therefore, developing alternative solutions for metabolic syndromes is crucial. N6-methyladenosine (m6A) is one of the most abundant modifications that determine the fate of RNA. m6A modifications are closely associated with metabolic syndrome development and present novel prospects for clinical applications. Aberrant m6A modifications have been detected during inflammatory infiltration, apoptosis, autophagy, iron sagging, necrosis, and scorching during metabolic syndrome pathogenesis and progression. However, few reviews have systematically described the correlation between m6A modifications and these factors concerning metabolic syndrome pathogenesis and progression. This study summarizes the m6A methylation regulators and their roles in metabolic syndrome development, highlighting the potential of m6A modification as a biomarker in metabolic disorders.

18.
ACS Omega ; 9(25): 27137-27157, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947838

RESUMO

Previous studies have demonstrated the regulatory roles of Transmembrane protein 147 (TMEM147) in various diseases, including cancer. However, systematic pan-cancer analyses investigating the role of TMEM147 in diagnosis, prognosis, and immunological prediction are lacking. An analysis of data from The Cancer Genome Atlas (TCGA) revealed differential TMEM147 expression across various types of cancer as well as within immune and molecular cancer subtypes. Moreover, high TMEM147 expression was associated with poor disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI) across cancers, suggesting its potential as a prognostic biomarker. Our study further revealed a significant correlation between TMEM147 expression and T helper cell and Tcm cell infiltration in most cancer types. In the case of liver hepatocellular carcinoma (LIHC), the effect of TMEM147 on prognosis varied among different clinical subtypes. Additionally, functional enrichment analysis revealed an association between TMEM147 and metabolic pathways. Finally, experiments on the MIHA cell line and four LIHC cell lines confirmed the role of TMEM147 in promoting liver cancer cell proliferation, further confirming the clinical value of TMEM147 in liver cancer diagnosis. Our findings suggest that TMEM147 may serve as a diagnostic and prognostic biomarker across cancers while also playing a significant role in LIHC.

19.
Cell Genom ; 4(5): 100556, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38697123

RESUMO

The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.


Assuntos
Regiões 3' não Traduzidas , Proteínas Reguladoras de Apoptose , Proteínas de Membrana , Obesidade Infantil , Criança , Humanos , Regiões 3' não Traduzidas/genética , Alelos , Diferenciação Celular/genética , Cromossomos Humanos Par 12/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células-Tronco Embrionárias Humanas/metabolismo , Neurônios/metabolismo , Obesidade Infantil/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Membrana/genética , Proteínas Reguladoras de Apoptose/genética
20.
Nutr Metab (Lond) ; 20(1): 40, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710320

RESUMO

BACKGROUND: Insulin resistance (IR) in hepatocytes endangers human health, and frequently results in the development of non-alcoholic fatty liver disease (NAFLD). Research on m6A methylation of RNA molecules has gained popularity in recent years; however, the molecular mechanisms regulating the processes of m6A modification and IR are not known. The cytochrome P450 (CYP450) enzyme system, which is mainly found in the liver, is associated with the pathogenesis of NAFLD. However, few studies have been conducted on CYP450 related m6A methylation. Here, we investigated the role of the methyltransferase METTL3 in exacerbating IR in hepatocytes, mainly focusing on the regulation of m6A modifications in CYP2B6. METHODS AND RESULTS: Analysis using dot blot and epitranscriptomic chips revealed that the m6A modification pattern of the transcriptome in high-fat diet (HFD)-induced fatty liver and free fatty acid (FFA)-induced fatty hepatocytes showed significant changes. CYP450 family members, especially Cyp2b10, whose homolog in humans is CYP2B6, led to a noticeable increase in m6A levels in HFD-induced mice livers. Application of the METTL3 methyltransferase inhibitor, STM2457, increased the level of insulin sensitivity in hepatocytes. We then analyzed the role of METTL3 in regulating m6A modification of CYP2B6 in hepatocytes. METTL3 regulated the m6A modification of CYP2B6, and a positive correlation was found between the levels of CYP2B6 translation and m6A modifications. Furthermore, interference with METTL3 expression and exposure to STM2457 inhibited METTL3 activity, which in turn interfered with the phosphorylated insulin receptor substrate (pIRS)-glucose transporter 2 (GLUT2) insulin signaling pathway; overexpression of CYP2B6 hindered IRS phosphorylation and translocation of GLUT2 to membranes, which ultimately exacerbated IR. CONCLUSION: These findings offer unique insights into the role that METTL3-mediated m6A modifications of CYP2B6 play in regulating insulin sensitivity in hepatocytes and provide key information for the development of strategies to induce m6A modifications for the clinical treatment of NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA