RESUMO
Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.
Assuntos
Aedes/metabolismo , Ecdisona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotrofos/metabolismo , Proteínas de Insetos/metabolismo , Metamorfose Biológica , Vitelogênese , Aedes/genética , Aedes/crescimento & desenvolvimento , Animais , Feminino , Proteínas de Insetos/genéticaRESUMO
Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.
Assuntos
Hedera , Ácido Oleanólico/análogos & derivados , Saponinas , Glicosiltransferases/genéticaRESUMO
This research presents a comprehensive study of the dichotomous search iterative parabolic discrete time Fourier transform (Ds-IpDTFT) estimator, a novel approach for fine frequency estimation in noisy exponential signals. The proposed estimator leverages a dichotomous search process before iterative interpolation estimation, which significantly reduces computational complexity while maintaining high estimation accuracy. An in-depth exploration of the relationship between the optimal parameter p and the unknown parameter δ forms the backbone of the methodology. Through extensive simulations and real-world experiments, the Ds-IpDTFT estimator exhibits superior performance relative to other established estimators, demonstrating robustness in noisy conditions and stability across varying frequencies. This efficient and accurate estimation method is a significant contribution to the field of signal processing and offers promising potential for practical applications.
RESUMO
A Gram-stain-negative, light yellow, aerobic, non-motile, short rod-shaped bacterium named strain Y-23T with iprodione-degrading capability was isolated from a soil under a greenhouse in Tibet, PR China. Strain Y-23T grew at 4-37 â and pH 5.0-9.0 (optimum, 25 â and pH 7.0) with 0-3% (w/v) NaCl (optimum, 0%). Phylogenetic analysis based on 16S rRNA gene and chromosome genome indicated that strain Y-23T formed a stable evolutionary branch with Acinetobacter tandoii DSM 14970T. The 16S rRNA gene similarity, digital DNA-DNA hybridization and average nucleotide identity values between strain Y-23T and Acinetobacter tandoii DSM 14970T were 98.31%, 43.2% and 91.2%, respectively. The genome size was 3.39 Mbp with a genomic DNA G+C content of 40.59 mol%. The predominant fatty acids were C18:1 ω9c, Summed feature 3 (C16:1 ω7c/C16:1 ω6c), C12:0, C12:0 3-OH and C16:0. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline, unidentified phospholipid, four unidentified aminophospholipids and two unidentified lipids. The isoprenoid quinone was Q-8 (19.43%) and Q-9 (80.57%). Based on phenotypic, phylogenetic, and genotypic data, strain Y-23T is considered to represent a novel species of the genus Acinetobacter, for which the name Acinetobacter tibetensis sp. nov. is proposed. The type strain is Y-23T (= CICC 25150T = JCM 35630T).
Assuntos
Acinetobacter , Solo , Tibet , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genéticaRESUMO
The hollow trait is crucial for commercial quality of cucumber (Cucumis sativus L.) fruit, and its molecular regulatory mechanism is poorly understood due to its environmental sensitivity. In the previous research, we obtained the hollow and the non-hollow materials of ecotype cucumbers of South China, which were not easily affected by the external environment through a systematic breeding method. In this study, first, we proposed to use the percentage of the hollow area as the criterion to compare the hollow characteristics between two materials, and to analyze the formation mechanism of early hollow trait from the perspective of cytology. The results showed that the hollow trait occurred in the early stage of fruit development, and formed with the opening of carpel ventral zipped bi-cell layer, which formed rapidly from 2 to 4 days, and then slowed to a constant rate from 14 to 16 days. Meanwhile, the different genetic populations were constructed using these materials, and fine mapping was performed by bulked segregant analysis (BSA) and kompetitive allele specific PCR (KASP) method. The Csa1G630860 (CsALMT2), encoding protein ALMT2, was determined as a candidate gene for regulating the hollow trait in fruit. Furthermore, the expression profile of CsALMT2 was analyzed by qRT-PCR and fluorescence in situ hybridization. The expression of CsALMT2 had obvious tissue specificity, and it was abundantly expressed in the ovule development zone inside the fruit. In the hollow material of cucumber fruit, the expression of CsALMT2 was significantly downregulated. The subcellular localization in tobacco leaves indicated that CsALMT2 was distributed on the plasma membrane. In conclusion, in this study, for the first time, we found the regulatory gene of hollow trait in cucumber fruit, which laid the foundation for subsequent research on the molecular mechanism of hollow trait formation in cucumber fruit, and made it possible to apply this gene in cucumber breeding.
Assuntos
Cucumis sativus , Cucumis sativus/genética , Frutas/genética , Hibridização in Situ Fluorescente , Fenótipo , Melhoramento VegetalRESUMO
Tannin acyl hydrolase referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannin to release gallic acid. The tannase TanBLp which cloned from Lactobacillus plantarum ATCC14917T has high activity in the pH range (7.0-9.0) at 40 °C, it would be detrimental to the utilization at acidic environment. The catalytic sites and stability of TanBLp were analyzed using bioinformatics and site-specific mutagenesis. The results reiterated that the amino acid residues Ala164, Lys343, Glu357, Asp421 and His451 had played an important role in maintaining the activity. The optimum pH of mutants V75A, G77A, N94A, A164S and F243A were shifted from 8.0 to 6.0, and mutant V75A has the highest pH stability and activity at acidic conditions than other mutants, which was more suitable for industrial application to manufacture gallic acid. This study was of great significance to promote the industrialization and efficient utilization of tannase TanBLp.
RESUMO
Garlic organic sulfides are dietary bioactive components with multiple biofunctions to prevent chronic diseases/inflammation and promote human health. DADS (diallyl disulfide), DATS (diallyl trisulfide), and DTS (diallyl tetrasulfide) are typical organic sulfides with similar structures from garlic. However, the structure-activity relationship of garlic organic sulfides remained unknown. The aim of the present study was to investigate the effect of DADS, DATS, and DTS on the gene expression profiling of human hepatocellular carcinoma cells (HepG2) by application of microarray and specialized analysis software, GO, Bio-Plex-based cytokines assay and IPA and analyze their structure-activity relationship according to antioxidant, anti-inflammatory, and metabolic-related properties. According to the microarray data, with the increase of S atom in garlic organic sulfides, its biological activity was gradually enhanced. In the general catalog of GO, garlic organic sulfides mainly affect biological process, molecular function, and cellular component. RT-qPCR results indicated that the microarray data is trustworthy, and the structure-activity analysis data found that more sulfur atoms have more powerful properties; thus, microarray data of DTS was preceded to the subsequent IPA analysis. The results of IPA analysis showed that the top 5 signaling pathways and molecular functions were disturbed by DTS; the molecular functions with the highest scores affected by DTS are cancer, cell apoptosis, and cell proliferation, which imply that the occurrence or metabolism of these diseases is related to the differential expression of the above-mentioned related genes and the activation of signaling channels, and the core of the most significant molecular network is inflammation. Finally, the results found that the secretions of 6 cytokines in macrophages were significantly inhibited by DTS treatment. This is the first study that analyzed the structure-activity relationship of garlic organic sulfides, which will provide useful genetic information for its multi-biofunction and promote their clinical application in the near future.
Assuntos
Compostos Alílicos/farmacologia , Dissulfetos/farmacologia , Alho/química , Perfilação da Expressão Gênica , Sulfetos/farmacologia , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Fator 2 Relacionado a NF-E2/fisiologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Dihydromyricetin (DHM) is a flavonoid extracted from the leaves and stems of the edible plant Ampelopsis grossedentata that has been used for Chinese Traditional Medicine. It has attracted considerable attention from consumers due to its beneficial properties including anticancer, antioxidative, and anti-inflammatory activities. Continuous oxidative stress caused by intracellular redox imbalance can lead to chronic inflammation, which is intimately associated with the initiation, promotion, and progression of cancer. DHM is considered a potential redox regulator for chronic disease prevention, and its biological activities are abundantly evaluated by using diverse cell and animal models. However, clinical investigations are still scanty. This review summarizes the current potential chemopreventive effects of DHM, including its properties such as anticancer, antioxidative, and anti-inflammatory activities, and further discusses the underlying molecular mechanisms of DHM in cancer chemoprevention by targeting redox balance and influencing the gut microbiota.
Assuntos
Anti-Inflamatórios/farmacologia , Flavonóis/farmacologia , Neoplasias/prevenção & controle , Animais , Humanos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway-plant, plant-pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.
Assuntos
Cucumis sativus/metabolismo , Frutas/metabolismo , Genes de Plantas , Metaboloma , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/metabolismo , Transcriptoma , Carotenoides/metabolismo , Cucumis sativus/genética , DNA de Plantas/genética , Flavonas/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sistema de Sinalização das MAP Quinases , Pigmentação , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Lotus seed is well known as traditional food and medicine, but its skin is usually discarded. Recent studies have shown that lotus seed skin contains a high concentration of proanthocyanidins that have multi-functions, such as antioxidation, anti-inflammation, and anti-cancer effects. In the present study, we aimed to isolate and purify the proanthocyanidins from lotus seed skin by acetone extraction and rotary evaporation, identify their chemical structures by HPLC-MS-MS and NMR, and further investigate the antioxidant properties of the extract purified by macroporous resin (PMR) from lotus seed skin both in vitro and in vivo. The results showed that PMR mainly contained oligomeric proanthocyanidins, especially dimeric procyanidin B1 (PB1), procyanidin B2 and procyanidin B4. Although it had limited ability to directly scavenge radicals in vitro, PMR could significantly enhance the expressions of antioxidant proteins via activation of nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway in HepG2 cells. Molecular data revealed that PB1, a major component in PMR, stabilized Nrf2 by inhibiting the ubiquitination of Nrf2, which led to subsequent activation of the Nrf2-ARE pathway, including the enhancements of Nrf2 nuclear translocation, Nrf2-ARE binding and ARE transcriptional activity. Moreover, the in vivo results in high fat diet-induced mice further verified the powerful antioxidant property of PMR. These results revealed that lotus seed skin is a promising resource for functional food development.
Assuntos
Elementos de Resposta Antioxidante/genética , Lotus/química , Fator 2 Relacionado a NF-E2/genética , Proantocianidinas/farmacologia , Sementes/química , Animais , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectrometria de Massas em TandemRESUMO
P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.
Assuntos
Ativação do Canal Iônico/fisiologia , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X4/química , Células HEK293 , Humanos , Domínios Proteicos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismoRESUMO
The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists.
Assuntos
Canais Epiteliais de Sódio/fisiologia , FMRFamida/metabolismo , FMRFamida/fisiologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Células CHO , Cricetulus , Cristalografia por Raios X/métodos , Canais de Sódio Degenerina/fisiologia , Guanidinas/farmacologia , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Ligantes , Moluscos/metabolismo , Oócitos/fisiologia , Peptídeos/farmacologia , Quinazolinas/farmacologia , Xenopus laevisRESUMO
Lesion mimic mutants are valuable to unravel the mechanisms governing the programmed cell death (PCD) process. Uridine 5'-diphosphoglucose-glucose (UDPG) functions as a signaling molecule activating multiple pathways in animals, but little is known about its function in plants. Two novel allelic mutants of spl29 with typical PCD characters and reduced pollen viability were obtained by ethane methyl sulfonate mutagenesis in rice cv Kitaake. The enzymatic analyses showed that UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) irreversibly catalyzed the decomposition of UDPG. Its activity was severely destroyed and caused excessive UDPG accumulation, with the lesion occurrence associated with the enhanced caspase-like activities in spl29-2. At the transcriptional level, several key genes involved in endoplasmic reticulum stress and the unfolded protein response were abnormally expressed. Moreover, exogenous UDPG could aggravate lesion initiation and development in spl29-2. Importantly, exogenous UDPG and its derivative UDP-N-acetylglucosamine could induce reactive oxygen species (ROS) accumulation and lesion mimics in Kitaake seedlings. These results suggest that the excessive accumulation of UDPG, caused by the mutation of UAP1, was a key biochemical event resulting in the lesion mimics in spl29-2. Thus, our findings revealed that UDPG might be an important component involved in ROS accumulation, PCD execution and lesion mimicking in rice, which also provided new clues for investigating the connection between sugar metabolism and PCD process.
Assuntos
Apoptose , Nucleotidiltransferases/metabolismo , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Uridina Difosfato Glucose/metabolismo , Caspases/metabolismo , Estresse do Retículo Endoplasmático , Mutação , Nucleotidiltransferases/genética , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Pólen/genética , Pólen/fisiologiaRESUMO
FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily. The peptide ligand control of the channel gating might be an ancient ligand-gating feature in this superfamily. Therefore, studying the peptide recognition of FaNaC channels would advance our understanding of the ligand-gating properties of this superfamily of ion channels. Here we demonstrate that Tyr-131, Asn-134, Asp-154, and Ile-160, located in the putative upper finger domain ofHelix aspersaFaNaC (HaFaNaC) channels, are key residues for peptide recognition of this ion channel. Two HaFaNaC specific-insertion motifs among the ENaC/DEG superfamily, residing at the putative α4-α5 linker of the upper thumb domain and the α6-α7 linker of the upper knuckle domain, are also essential for the peptide recognition of HaFaNaC channels. Chemical modifications and double mutant cycle analysis further indicated that those two specific inserts and key residues in the upper finger domain together participate in peptide recognition of HaFaNaC channels. This ligand recognition site is distinct from that of acid-sensing ion channels (ASICs) by a longer distance between the recognition site and the channel gate, carrying useful information about the ligand gating and the evolution of the trimeric ENaC/DEG superfamily of ion channels.
Assuntos
Ativação do Canal Iônico/fisiologia , Peptídeos/metabolismo , Canais de Sódio/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Peptídeos/genética , Estrutura Terciária de Proteína , Canais de Sódio/genéticaRESUMO
Impaired endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway induces atherogenesis. The present study examined whether icariin improves the eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null (ApoE-/-) mice. In vitro, primary human umbilical vein endothelial cells (HUVECs) were randomly divided into 7 groups: control; vehicle; icariin 10; lyphosphatidylcholine (LPC) group; LPC + icariin 1; LPC + icariin 3; and LPC + icariin 10. In vivo, 80 mice were separated randomly into 4 groups (n = 20): control, ApoE-/-, ApoE-/- + icariin 10, and ApoE-/- + icariin 30. ApoE-/- mice had significantly more atherosclerosis in the aortic root together with increased aortic ROS production, body mass, plasma triglyceride (TG) and total cholesterol (TC) concentration, decreased aortic eNOS expression, and plasma NO concentration. LPC (10 µg/mL) treatment induced a big decline in NO level in the conditioned medium and eNOS expression, and an increase in intracellular reactive oxygen species (ROS) production in HUVECs. Icariin treatment decreased atherogenesis, ROS production, body mass, plasma TG concentration, and plasma TC concentration, and increased NO concentration and eNOS expression. These findings suggested icariin could improve eNOS/NO-pathway to prohibit the atherogenesis of apolipoprotein E-null mice by restraining oxidative stress.
Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/prevenção & controle , Flavonoides/farmacologia , Deleção de Genes , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genéticaRESUMO
Estimating the chirpiness of a spatial chirp signal is important in many optical engineering applications. With the help of transformation optics, a new kind of fractional Fourier transform lens is designed by deforming the conventional graded index lens through conformal mapping, which can manipulate the chirpiness of the input chirp signal. The low-input chirpiness is magnified by the transformation material, and the error of the detection is kept approximately the same; thus, the designed lens has enhanced chirpiness detection precision and distinguishability for low chirpiness. The design is validated by numerical simulations.
RESUMO
Root determines plant distribution, development progresses, stress response, as well as crop qualities and yields, which is under the tight control of genetic programs and environmental stimuli. Ethylene responsive factor proteins (ERFs) play important roles in plant growth and development. Here, the regulatory function of OsERF2 involved in root growth was investigated using the gain-function mutant of OsERF2 (nsf2857) and the artificial microRNA-mediated silenced lines of OsERF2 (Ami-OsERF2). nsf2857 showed short primary roots compared with the wild type (WT), while the primary roots of Ami-OsERF2 lines were longer than those of WT. Consistent with this phenotype, several auxin/cytokinin responsive genes involved in root growth were downregulated in nsf2857, but upregulated in Ami-OsERF2. Then, we found that nsf2857 seedlings exhibited decreased ABA accumulation and sensitivity to ABA and reduced ethylene-mediated root inhibition, while those were the opposite in Ami-ERF2 plants. Moreover, several key genes involved in ABA synthesis were downregulated in nsf2857, but unregulated in Ami-ERF2 lines. In addition, OsERF2 affected the accumulation of sucrose and UDPG by mediating expression of key genes involved in sucrose metabolism. These results indicate that OsERF2 is required for the control of root architecture and ABA- and ethylene-response by tuning expression of series genes involved in sugar metabolism and hormone signaling pathways.
Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sacarose/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Use of natural polysaccharides in medicine and food has wide interest in research. In this study, we extracted and purified some polysaccharides from cactus Opuntia dillenii Haw. (ODP). Some preliminary functions of these products were characterized. Under the optimal purification conditions, the yield of ODP extracted from the 2-4 month-old Opuntia dillenii Haw. (T-ODP) was 30.60% ± 0.40%, higher than that of ODP from the 5-10 month-old materials (O-ODP) (18.97% ± 0.58%). The extracted ODP was purified by DEAE sepharose fast flow anion exchange and Sephacryl S-400 chromatography with four fractions obtained (ODP-Ia, ODP-Ib, ODP-IIa and ODP-IIb). Analysis with UV-vis chromatography indicated that ODP-Ia and ODP-IIa were relatively homogeneous molecules with a molecular weight of 339 kD and 943 kD, respectively. Results of infrared spectroscopy indicated that ODP, ODP-Ia, and ODP-IIa were acidic polysaccharides. Further, the antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical, hydroxyl radicals, and superoxide radical in vitro demonstrated that the T-ODP exhibited higher antioxidant activity than the O-ODP, and the purified fraction (ODP-Ia) was superior to the ODP. These results will offer a theoretical basis for further research on the structure-function relationship of ODP and the rational utilization of Opuntia dillenii Haw.
Assuntos
Antioxidantes/química , Opuntia/química , Extratos Vegetais/química , Polissacarídeos/química , Compostos de Bifenilo/química , Radical Hidroxila/química , Picratos/química , Superóxidos/químicaRESUMO
BACKGROUND: The study on the second generation bio-fuel is a hot area of current research of renewable energy. Among series of key points in this area, the role of ß-glucosidase in the degradation of intermediate gluco-oligosaccharides limits the rate of the complete saccharification of lignocellulose. RESULTS: In this study, a new ß-glucosidase gene, unglu135B12, which was isolated from a metagenomic library of rumen of cattle feeding with Miscanthus sinensis by the function-based screening, encodes a 779 amino acid polypeptide that contains a catalytic domain belonging to glycoside hydrolase family 3 (GH3). It was recombinantly expressed, purified and biochemically characterized. The recombinant ß-glucosidase, unglu135B12, displayed optimum enzymatic activity at pH 5.0 at 38°C, and showed the highest specific activity of 2.5 × 10(3) U/mg under this optimal condition to p-nitrophenyl-ß-D-glucopyranoside (pNPG), and its Km and Vmax values were 0.309 mmol/L and 7.292 µmol/min, respectively. In addition, the presence of Ca2+, K+, Na+ slightly improved ß-glucosidase activity of unglu135B12 by about 5%, while about 10~85% loss of ß-glucosidase activity was induced by addition of Mn2+, Fe3+, Zn2+, Cu2+. Interestingly, unglu135B12 was activated by glucose at the concentration lower than 40 mM. CONCLUSIONS: Our findings indicate that unglu135B12 is a new ß-glucosidase derived from rumen of cattle, and it might be a potent candidate for saccharification of lignocellulose in industrial application.
Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Metagenoma , Rúmen/microbiologia , beta-Glucosidase/química , beta-Glucosidase/genética , Sequência de Aminoácidos , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bovinos/metabolismo , Bovinos/microbiologia , Estabilidade Enzimática , Biblioteca Gênica , Cinética , Dados de Sequência Molecular , Filogenia , Poaceae/metabolismo , Estrutura Terciária de Proteína , Rúmen/metabolismo , beta-Glucosidase/metabolismoRESUMO
The microbial community structures in an integrated two-phase anaerobic reactor (ITPAR) were investigated by 16S rDNA clone library technology. The 75L reactor was designed with a 25L rotating acidogenic unit at the top and a 50L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales, Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid (VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.