Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(36): e2405168121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39196620

RESUMO

Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation. Here, we utilize preimposed programmable photopatterning in nematics to control the kinetics of director solitons. This enables both unidirectional and bidirectional generation at specific locations and times, confinement within micron-scaled patterns of diverse shapes, and directed propagation along predefined trajectories. A focused dynamical model provides insight into the origins of these solitons and aligns closely with experimental observations, underscoring the pivotal role of anchoring conditions in soliton manipulation. Our findings pave the way for diverse fundamental research avenues and promising applications, including microcargo transportation and optical information processing.

2.
Nano Lett ; 24(23): 7019-7024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808680

RESUMO

We present a secure and user-friendly ultraminiaturized anticounterfeiting labeling technique─the color-encoded physical unclonable nanotag. These nanotags consist of subwavelength spots formed by random combinations of multicolor quantum dots, which are fabricated using a cost-efficient printing method developed in this study. The nanotags support over 170,000 different colors and are inherently resistant to cloning. Moreover, their high brightness and color purity, owing to the quantum dots, ensure an ease of readability. Additionally, these nanotags can function as color-encrypted pixels, enabling the incorporation of labels (such as QR codes) into ultrasmall physically unclonable hidden tags with a resolution exceeding 100,000 DPI. The unique blend of compactness, flexibility, and security positions the color-encoded nanotag as a potent and versatile solution for next-generation anticounterfeiting applications.

3.
Nano Lett ; 24(25): 7609-7615, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861682

RESUMO

Long-wave infrared (LWIR) imaging, or thermal imaging, is widely applied in night vision and security monitoring. However, the widespread use of LWIR imagers is impeded by their bulky size, considerable weight, and high cost. While flat meta-optics present a potential solution to these limitations, existing pure LWIR meta-optics face constraints such as severe chromatic or coma aberrations. Here, we introduce an approach utilizing large-scale hybrid meta-optics to address these challenges and demonstrate the achromatic, coma-corrected, and polarization-insensitive thermal imaging. The hybrid metalens doublet is composed of a metasurface corrector and a refractive lens, featuring a full field-of-view angle surpassing 20° within the 8-12 µm wavelength range. Employing this hybrid metalens doublet, we showcase high-performance thermal imaging capabilities both indoors and outdoors, effectively capturing ambient thermal radiation. The proposed hybrid metalens doublet holds considerable promise for advancing miniaturized, lightweight, and cost-effective LWIR optical imaging systems.

4.
Nano Lett ; 24(42): 13405-13413, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39382225

RESUMO

Compliant strain gauges are well-suited to monitor tiny movements and processes in the body. However, they are easily damaged by unexpected impacts in practical applications, limiting their utility in controlled laboratory environments. This study introduces elastic microcracked MXene films for mechanically driven self-healing strain gauges. MXene films are deposited on soft silicone substrates and intentionally stretched to create saturated microcracks. The resulting device not only has high sensitivity but also can recover its original sensing capability even after experiencing failure-level overstrains. This electrical self-healing ability is achieved through the elastic rebound of the substrate, which autonomously restores the microcracked morphology of the MXene film. The MXene strain gauge can withstand overextension, twisting, impact forces, and even car rolling. The device is also resilient to touch-induced damage during monitoring of physiological motions. The mechanically driven self-healing strategy may effectively improve the durability of highly sensitive strain sensors.

5.
Nano Lett ; 24(1): 140-147, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37982545

RESUMO

Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.

6.
Nano Lett ; 24(35): 11036-11042, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39185718

RESUMO

The phase-shifting structured light illumination technique is widely used in imaging but often relies on mechanical translation stages or spatial light modulators, leading to system instability, low displacement accuracy, and limited integration feasibility. In response to these challenges, we propose and demonstrate an approach for generating far-field phase-shifting structured light using a polarization multiplexing metasurface. By controlling the polarization states of incident and transmitted light, the metasurface creates a three-step displacement of structured light, eliminating the need to move samples or illumination sources. As a proof of concept, we experimentally demonstrate microscopic imaging using structured light illumination generated by metasurfaces, extracting high-frequency information from objects, and surpassing the diffraction limit. The proposed metasurface platform offers a promising approach for developing compact and robust phase-shifting imaging systems, with broad prospects in quantitative detection, machine vision, and beyond.

7.
J Am Chem Soc ; 146(29): 20312-20322, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980945

RESUMO

Organic photovoltaic (OPV) devices attain high performance with nonfullerene acceptors by utilizing the synergistic dual channels of charge generation that originate from excitations in both the donor and acceptor materials. However, the specific intermediate states that facilitate both channels are subject to debate. To address this issue, we employ time-resolved terahertz spectroscopy with improved sensitivity (ΔE/E < 10-6), enabling direct probing of charge generation dynamics in a prototypical PM6:Y6 bulk heterojunction system under one-sun-equivalent excitation density. Charge generation arising from donor excitations is characterized with a rise time of ∼9 ps, while that from acceptor excitations shows a rise time of ∼18 ps. Temperature-dependent measurements further reveal notably distinct activation energies for these two charge generation pathways. Additionally, the two channels of charge generation can be substantially manipulated by altering the ratio of bulk to interfaces. These findings strongly suggest the presence of two distinct intermediate states: interfacial and intramoiety excitations. These states are crucial in mediating the transfer of electrons and holes, driving charge generation within OPV devices.

8.
Opt Express ; 32(4): 5898-5907, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439305

RESUMO

Quantum ghost image technique utilizing position or momentum correlations between entangled photons can realize nonlocal reconstruction of the image of an object. In this work, based on polarization entanglement, we experimentally demonstrate quantum ghost imaging of vector images by using a geometric phase object. We also provide a corresponding theoretical analysis. Additionally, we offer a geometrical optics path explanation of ghost imaging for vector fields. The proposed strategy offers new insights into the fundamental development of ghost imaging and also holds great promise for developing complex structured ghost imaging techniques. Our work expanding the principle of ghost imaging to spatially varying vector beams will lead to interesting developments of this field.

9.
Phys Rev Lett ; 132(15): 153801, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683010

RESUMO

In this Letter, we explore the intersection of chirality and recently discovered toroidal spatiotemporal optical vortices (STOVs). We introduce "photonic conchs" theoretically as a new type of toroidal-like state exhibiting geometrical chirality, and experimentally observe these wave packets with controllable topological charges. Unlike toroidal STOVs, photonic conchs exhibit unique chirality-related dynamical evolution in free space and possess an orbital angular momentum correlated with all the dimensions of space-time. This research deepens our understanding of toroidal light states and potentially advances various fields by unveiling similar wave phenomena in a broader scope of physics systems, including acoustics and electronics.

10.
Nano Lett ; 23(6): 2436-2441, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723626

RESUMO

The electron vortex beam (EVB)-carrying quantized orbital angular momentum (OAM) plays an essential role in a series of fundamental research. However, the radius of the transverse intensity profile of a doughnut-shaped EVB strongly depends on the topological charge of the OAM, impeding its wide applications in electron microscopy. Inspired by the perfect vortex in optics, herein, we demonstrate a perfect electron vortex beam (PEVB), which completely unlocks the constraint between the beam size and the beam's OAM. We design nanoscale holograms to generate PEVBs carrying different quanta of OAM but exhibiting almost the same beam size. Furthermore, we show that the beam size of the PEVB can be readily controlled by only modifying the design parameters of the hologram. The generation of PEVB with a customized beam size independent of the OAM can promote various in situ applications of free electrons carrying OAM in electron microscopy.

11.
Nano Lett ; 23(4): 1539-1545, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749037

RESUMO

We present a unidirectional dielectric optical antenna, which can be chemically synthesized and controlled by magnetic fields. By applying magnetic fields, we successfully aligned an optical antenna on a prepatterned quantum dot nanospot with accuracy better than 40 nm. It confined the fluorescence emission into a 16-degree wide beam and enhanced the signal by 11.8 times. Moreover, the position of the antenna, and consequently the beam direction, can be controlled by simply adjusting the direction of the magnetic fields. Theoretical analyses show that this magnetic alignment technique is stable and accurate, providing a new strategy for building high-performance tunable nanophotonic devices.

12.
Nano Lett ; 23(7): 2991-2997, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36971648

RESUMO

Spiral phase contrast imaging and bright-field imaging are two widely used modes in microscopy, providing distinct morphological information about objects. However, conventional microscopes are always unable to operate with these two modes at the same time and need additional optical elements to switch between them. Here, we present a microscopy setup that incorporates a dielectric metasurface capable of achieving spiral phase contrast imaging and bright-field imaging synchronously. The metasurface not only can focus the light for diffraction-limited imaging but also can perform a two-dimensional spatial differentiation operation by imparting an orbital angular momentum to the incident light field. This allows two spatially separated images to be simultaneously obtained, one containing high-frequency edge information and the other showing the entirety of the object. Combined with the advantages of planar architecture and ultrathin thickness of the metasurface, this approach is expected to provide support in the fields of microscopy, biomedicine, and materials science.

13.
Nano Lett ; 23(23): 11174-11183, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047765

RESUMO

Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.

14.
Angew Chem Int Ed Engl ; 63(12): e202319536, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265637

RESUMO

Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805 ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20 cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.

15.
Phys Rev Lett ; 130(7): 078101, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867811

RESUMO

Topological defects usually emerge and vary during the phase transition of ordered systems. Their roles in thermodynamic order evolution keep being the frontier of modern condensed matter physics. Here, we study the generations of topological defects and their guidance on the order evolution during the phase transition of liquid crystals (LCs). With a given preset photopatterned alignment, two different types of topological defects are achieved depending on the thermodynamic process. Because of the memory effect of LC director field across the Nematic-Smectic (N-S) phase transition, a stable array of toric focal conic domains (TFCDs) and a frustrated one are generated in S phase, respectively. The frustrated one transfers to a metastable TFCD array with a smaller lattice constant, and further changes to a crossed-walls type N state due to the inheritance of orientational order. A free energy on temperature diagram and corresponding textures vividly describe the phase transition process and the roles of topological defects in the order evolution across the N-S phase transition. This Letter reveals the behaviors and mechanisms of topological defects on order evolution during phase transitions. It paves a way for investigating topological defect guided order evolution which is ubiquitous in soft matter and other ordered systems.

16.
Opt Express ; 30(11): 19199-19211, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221704

RESUMO

It is a challenge for all-optical switching to simultaneous achieve ultralow power consumption, broad bandwidth and high extinction ratio. We experimentally demonstrate an ultralow-power all-optical switching by exploiting chiral interaction between light and optically active material in a Mach-Zehnder interferometer. We achieve switching extinction ratio of 20.0 ± 3.8 and 14.7 ± 2.8 dB with power cost of 66.1 ± 0.7 and 1.3 ± 0.1 fJ/bit, respectively. The bandwidth of our all-optical switching is about 4.2 GHz. Moreover, our all-optical switching has the potential to be operated at few-photon level. Our scheme paves the way towards ultralow-power and ultrafast all-optical information processing.

17.
Opt Express ; 29(24): 40187-40193, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809365

RESUMO

Self-healing of an Airy beam during propagation is of fundamental interest and also promises important applications. Despite many studies of Airy beams in the quantum regime, it is unclear whether an Airy beam only including a single photon can heal after passing an obstacle because the photon may be blocked. Here we experimentally observe self-healing of a heralded single-photon Airy beam. Our observation implies that an Airy wave packet is robust against obstacle caused distortion and can restore even at the single-photon level.

18.
Phys Rev Lett ; 126(2): 020503, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512193

RESUMO

Entanglement distribution has been accomplished using a flying drone, and this mobile platform can be generalized for multiple mobile nodes with optical relay among them. Here we develop the first optical relay to reshape the wave front of photons for their low diffraction loss in free-space transmission. Using two drones, where one distributes the entangled photons and the other serves as relay node, we achieve entanglement distribution with Clauser-Horne-Shimony-Holt S parameter of 2.59±0.11 at 1 km distance. Key components for entangled source, tracking, and relay are developed with high performance and are lightweight, constructing a scalable airborne system for multinode connectio and toward mobile quantum networks.

19.
Phys Rev Lett ; 125(8): 080501, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909785

RESUMO

Weak-value amplification (WVA) is a metrological protocol that amplifies ultrasmall physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photodetection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is 6 times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.

20.
Phys Rev Lett ; 124(15): 153601, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357035

RESUMO

Vector vortex beams simultaneously carrying spin and orbital angular momentum of light promise additional degrees of freedom for modern optics and emerging resources for both classical and quantum information technologies. The inherently infinite dimensions can be exploited to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build quantum computing machines in high-dimensional Hilbert space. So far, much progress has been made in the emission of vector vortex beams from a chip surface into free space; however, the generation of vector vortex beams inside a photonic chip has not been realized yet. Here, we demonstrate the first vector vortex beam emitter embedded in a photonic chip by using femtosecond laser direct writing. We achieve a conversion of vector vortex beams with an efficiency up to 30% and scalar vortex beams with an efficiency up to 74% from Gaussian beams. We also present an expanded coupled-mode model for understanding the mode conversion and the influence of the imperfection in fabrication. The fashion of embedded generation makes vector vortex beams directly ready for further transmission, manipulation, and emission without any additional interconnection. Together with the ability to be integrated as an array, our results may enable vector vortex beams to become accessible inside a photonic chip for high-capacity communication and high-dimensional quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA