Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2109089119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254900

RESUMO

SignificanceThe Indian Ocean Dipole (IOD), an air-sea coupled phenomenon over the tropical Indian Ocean, has substantial impacts on the climate, ecosystems, and society. Due to the winter predictability barrier, however, a reliable prediction of the IOD has been limited to 3 or 4 mo in advance. Our work approaches this problem from a new data-driven perspective: the climate network analysis. Using this network-based method, an efficient early warning signal for the IOD event was revealed in boreal winter. Our approach can correctly predict the IOD events one calendar year in advance (from December of the previous year) with a hit rate of higher than 70%, which strongly outperforms current dynamic models.


Assuntos
Clima , Modelos Teóricos , Natureza , Oceano Índico
2.
Appl Environ Microbiol ; 90(3): e0181823, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38332488

RESUMO

Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.


Assuntos
Micotoxinas , Zearalenona , Zeranol , Humanos , Animais , Zearalenona/química , Zearalenona/metabolismo , Zeranol/química , Zeranol/metabolismo , Lactonas , Mutação Puntual , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Cinética , Micotoxinas/metabolismo
3.
Plant Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885024

RESUMO

Wet bubble disease (WBD) in Agaricus bisporus caused by Mycogone species imposes a substantial economic loss to mushroom production in China. Currently, fungicide application is the main method to control WBD. However, excessive use of fungicide is challenged by the appearance of resistance and food safety. Therefore, it is necessary to explore safe and efficient strategies to control WBD. Strain 9-13, isolated from the rhizosphere soil of Taxus chinensis, showed strong inhibitory activity against three Mycogone species. According to morphological and biochemical characteristics, and multilocus phylogenetic analysis, the strain was identified as Streptomyces nojiriensis. In addition, strain 9-13 extracts significantly inhibited mycelial growth and spore germination of M. perniciosa, M. rosea and M. xinjiangensis in vitro. Strain 9-13 and its extracts also exhibited broad-spectrum antifungal activities against 12 selected plant pathogenic fungi. Scanning electron microscopic observations showed that extracts destroyed mycelial structure, inducing mycelia to twist and shrink. Moreover, transmission electron microscopy revealed that extracts resulted in severe plasmolysis, rupture of cell membrane and a decrease in cell inclusions, and the cell wall appeared a rough and uneven surface. Notably, the extracts obviously reduced disease severity and incidence of WBD by from 83.85% to 87.32% in fruiting bodies and 77.36% in mushroom beds, and maintained fruiting time and color on harvested mushroom. Collectively, these results clearly indicate that S. nojiriensis 9-13 is a promising biocontrol agent to control WBD on A. bisporus.

4.
Hepatobiliary Pancreat Dis Int ; 21(5): 450-454, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36100543

RESUMO

BACKGROUND: The mortalities of hepatobiliary malignancies are high. With the failure of conventional chemotherapy and unsatisfactory outcome of molecular targeted drugs, immune-based therapy has become a new focus of research in hepatobiliary cancers treatment. DATA SOURCES: We performed a PubMed search with relevant articles published up to May 2022 and the following keywords: cellular immunotherapy, hepatobiliary cancer, antigen receptor T cell therapy, and receptor-engineered T cell. Information of clinical trials was obtained from https://clinicaltrials.gov/. RESULTS: Cell therapies for hepatobiliary malignancies are at early stage of development. The current review showed that cellular therapies are safe and feasible in patients. These findings provide an important platform for future lager scale clinical trials on immunotherapy in patients with hepatobiliary malignancies. CONCLUSIONS: With the continuous advances of cellular immunotherapy, the combination of cellular immunotherapy with surgery, chemotherapy and radiotherapy will be new therapeutic strategies for patients with hepatobiliary cancer.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/efeitos adversos , Neoplasias/terapia , Linfócitos T
5.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805929

RESUMO

Panose is a type of functional sugar with diverse bioactivities. The enzymatic conversion bioprocess to produce high purity panose with high efficiency has become increasingly important. Here, a new neopullulanase (NPase), Amy117 from B. pseudofirmus 703, was identified and characterized. Amy117 presented the optimal activity at pH 7.0 and 30 °C, its activity is over 40% at 10 °C and over 80% at 20 °C, which is cold-active. The enzyme cleaved α-1, 4-glycosidic linkages of pullulan to generate panose as the only hydrolysis product, and degraded cyclodextrins (CDs) and starch to glucose and maltose, with an apparent preference for CDs. Furthermore, Amy117 can produce 72.7 mg/mL panose with a conversion yield of 91% (w/w) based on 80 mg/mL pullulan. The sequence and structure analysis showed that the low proportion of Arg, high proportion of Asn and Gln, and high α-helix levels in Amy117 may contribute to its cold-active properties. Root mean square deviation (RMSD) analysis also showed that Amy117 is more flexible than two mesophilic homologues. Hence, we discovered a new high-efficiency panose-producing NPase, which so far achieves the highest panose production and would be an ideal candidate in the food industry.


Assuntos
Ciclodextrinas , Glicosídeo Hidrolases , Ciclodextrinas/metabolismo , Glucanos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
6.
Nucleic Acids Res ; 47(7): e40, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30767015

RESUMO

Fine-tuning of gene expression is crucial for protein expression and pathway construction, but it still faces formidable challenges due to the hierarchical gene regulation at multiple levels in a context-dependent manner. In this study, we defined the optimal targeting windows for CRISPRa and CRISPRi of the dCas9-α/ω system, and demonstrated that this system could act as a single master regulator to simultaneously activate and repress the expression of different genes by designing position-specific gRNAs. The application scope of dCas9-ω was further expanded by a newly developed CRISPR-assisted Oligonucleotide Annealing based Promoter Shuffling (OAPS) strategy, which could generate a high proportion of functional promoter mutants and facilitate the construction of effective promoter libraries in microorganisms with low transformation efficiency. Combing OAPS and dCas9-ω, the influences of promoter-based transcription, molecular chaperone-assisted protein folding and protease-mediated degradation on the expression of amylase BLA in Bacillus subtilis were systematically evaluated, and a 260-fold enhancement of BLA production was obtained. The success of the OAPS strategy and dCas9-ω for BLA production in this study thus demonstrated that it could serve as a powerful tool kit to regulate the expression of multiple genes multi-directionally and multi-dimensionally in bacteria.


Assuntos
Bacillus subtilis/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Proteína 9 Associada à CRISPR/metabolismo , Genes Bacterianos/genética , Chaperonas Moleculares/metabolismo , Mutação , Regiões Promotoras Genéticas/genética , Dobramento de Proteína , RNA Guia de Cinetoplastídeos/genética , Transcrição Gênica , Transformação Genética
7.
Appl Microbiol Biotechnol ; 102(4): 1545-1556, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29270732

RESUMO

As a common expression host, Escherichia coli has received more and more attention due to the recently developed secretory expression system, which offers advantages like reduced downstream bioprocesses and improved product quality. These advantages, coupled with high-density fermentation technology, make it a preferred system for large-scale production of many proteins utilized in industry and agriculture at a reduced process cost. To improve the secretion efficiency of target proteins, various strategies, including signal peptide optimization, periplasmic leakage, and chaperones co-expression have been developed. In addition, the optimization of the fermentation conditions such as temperature, inducer, and medium were also taken into account for the extracellular production in the high-density fermentation to reduce the cost of production. Here, these strategies ranging from genetic engineering to fermentation optimization were summarized for the future guidance of extracellular production of recombinant proteins using E. coli.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Fermentação , Microbiologia Industrial/métodos , Temperatura
8.
J Ind Microbiol Biotechnol ; 41(5): 783-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24659177

RESUMO

Alkaline α-amylases are of great interest in desizing processes and detergent industries. Here, an alkaline α-amylase gene amy703 from an alkaliphilic Bacillus pseudofirmus strain was cloned and sequenced. Its encoding product, Amy703, might represent a new clade of α-amylase family, because it shared only 35 % highest identity with all amylases characterized up to date and was not clustered into any subfamilies with amylase activity in glycoside hydrolase family 13. Heterologous expression and characterization of Amy703 showed that it is a metalloenzyme with maximal activity at 40 °C and pH 9.0. Its activity was significantly enhanced by 2- and 2.48-fold at the presence of 10 mM Ca2+ and Mg2+, respectively, while Hg2+ was a strong inhibitor of Amy703. Amy703 has a higher affinity (Km = 3.92 mg/ml) for soluble starch compared to many other alkaline amylases. The computer modeling of its structure indicated that Amy703 contains typical amylase domains and a loop region appearing to bind the substrates. Site-directed mutagenesis suggested that a conserved residue Glu550 was essential for the activity of Amy703, and proposed it working together with other two residues to constitute a catalytic triad (Asp521, Glu550, and Asp615).


Assuntos
Bacillus/enzimologia , alfa-Amilases/química , alfa-Amilases/genética , Sequência de Aminoácidos , Bacillus/classificação , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Especificidade por Substrato , alfa-Amilases/classificação , alfa-Amilases/metabolismo
9.
Int J Biol Macromol ; 256(Pt 2): 128416, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029919

RESUMO

Polysaccharide hydrolases are enzymes capable of hydrolyzing polysaccharides to generate oligosaccharides that have diverse applications in the food, feed and pharmaceutical industries. However, the detailed mechanisms governing the compositions of their hydrolysates remain poorly understood. Previously, we identified a novel neopullulase Amy117, which exclusively converts pullulan to panose by specifically cleaving α-1,4-glycosidic bonds. Yet, several enzymes with high homology to Amy117 produce a mixture of glucose, maltose and panose during pullulan hydrolysis. To explore this particular phenomenon, we compared the sequences and structures between Amy117 and the maltose amylase ThMA, and identified a specific residue Thr299 in Amy117 (equivalent to His294 in ThMA) within the product-releasing cleft of Amy117, which might be responsible for this characteristic feature. Using structure-based rational design, we have successfully converted the product profiles of pullulan hydrolysates between Amy117 and ThMA by simply altering this key residue. Molecular docking analysis indicated that the key residue at the product-releasing outlet altered the product profile by affecting the panose release rate. Moreover, we modeled the long-chain pullulan substrate G8 to examine its potential conformations and found that G8 might undergo a conformational change in the narrow cleft that allows the Amy117 variant to specifically recognize α-1,6-glycosidic bonds.


Assuntos
Glicosídeo Hidrolases , Maltose , Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Amilases , Hidrólise , Especificidade por Substrato
10.
Food Chem ; 446: 138804, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402766

RESUMO

In this study, we prepared a functional organic-inorganic hybrid nanoflower (InHNF) via split intein moiety in a biomineralization process without using organic solvents. InHNF could specifically bind the target enzymes from crude cell lysates within seconds and site-directedly display them on the surface by forming a peptide bond with enzyme's terminal amino acid residue. This unique feature enabled InHNF to increase the specific activity of zearalenone detoxifying enzyme ZHD518 by 40 âˆ¼ 60% at all tested temperatures and prevented enzyme denaturation even under extreme pH conditions (pH 3-11). Furthermore, it exhibited excellent operational stability, with a residual activity of over 70% after eight reaction cycles. Strikingly, InHNF-ZHD518 achieved above 50% ZEN degradation despite the near inactivation of free ZHD518 in beer sample. Overall, InHNF nanocarriers can achieve environmentally friendly, purification-free, and site-directed immobilization of food enzymes and enhance their catalytic properties, making them suitable for a wide range of industrial applications.


Assuntos
Zearalenona , Zearalenona/química , Inteínas
11.
Int J Biol Macromol ; 266(Pt 2): 131352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574926

RESUMO

Domain engineering, including domain truncation, fusion, or swapping, has become a common strategy to improve properties of enzymes, especially glycosyl hydrolases. However, there are few reports explaining the mechanism of increased activity from a protein structure perspective. Amy703 is an alkaline amylase with a unique N-terminal domain. Prior studies have shown that N-Amy, a mutant without an N-terminal domain, exhibits improved activity, stability, and calcium ion independence. In this study, we have used X-ray crystallography to determine the crystal structure of N-Amy and used AlphaFold2 to model the Amy703 structure, respectively. We further used size exclusion chromatography to show that Amy703 existed as a monomer, whereas N-Amy formed a unique dimer. It was found that the N-terminus of one monomer of N-Amy was inserted into the catalytic domain of its symmetrical subunit, resulting in the expansion of the catalytic pocket. This also significantly increased the pKa of the hydrogen donor Glu350, thereby enhancing substrate binding affinity and contributing to increased N-Amy activity. Meanwhile, two calcium ions were found to bind to N-Amy at different binding sites, which also contributed to the stability of protein. Therefore, this study provided new structural insights into the mechanisms of various glycosyl hydrolases.


Assuntos
Cálcio , Estabilidade Enzimática , Multimerização Proteica , Cálcio/metabolismo , Cálcio/química , Modelos Moleculares , Domínio Catalítico , Domínios Proteicos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Cristalografia por Raios X
12.
Biosens Bioelectron ; 257: 116329, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677023

RESUMO

Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Ácido Salicílico , Smartphone , Técnicas Biossensoriais/instrumentação , Ácido Salicílico/análise , Ácido Salicílico/química , Desenho de Equipamento , Humanos , Hidrogéis/química , Cosméticos/química , Cosméticos/análise
13.
Heliyon ; 9(8): e18410, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560628

RESUMO

Background: Presently, the current research concerning Achilles tendon rupture repair (ATR) is predominantly centered on the ankle joint, with a paucity of evidence regarding its impact on the knee joint. ATR has the potential to significantly impede athletic performance and increase tibiofemoral contact forces in athletes. The purpose of this study was to prognosticate the distribution of stress within the knee joint during a countermovement jump through the use of a simulation method that amalgamated a musculoskeletal model of a patient who underwent Achilles tendon rupture repair with a finite element model of the knee joint. Methods: A male elite badminton player who had suffered an acute Achilles tendon rupture in his right leg one year prior was selected as our study subject. In order to analyze his biomechanical data, we employed both the OpenSim musculoskeletal model and finite element model to compute various parameters such as joint angles, joint moments, joint contact forces, and the distribution of knee joint stress. Results: During the jumping phase, a significantly lower knee extension angle (p < 0.001), ankle dorsiflexion angle (p = 0.002), peak vertical ground reaction force (p < 0.001), and peak tibiofemoral contact force (p = 0.009) were observed on the injured side than on the uninjured side. During the landing phase, the ankle range of motion (ROM) was significantly lower on the injured side than on the uninjured side (p = 0.009), and higher peak vertical ground reaction forces were observed (p = 0.012). Additionally, it is logical that an injured person will put higher load on the uninjured limb, but the finite element analysis indicated that the stresses on the injured side of medial meniscus and medial cartilage were significantly greater than the uninjured side. Conclusions: An Achilles tendon rupture can limit ankle range of motion and lead to greater joint stress on the affected area during countermovement jumps, especially during the landing phase. This increased joint stress may also transfer more stress to the soft tissues of the medial knee, thereby increasing the risk of knee injury. It is worth noting that this study only involves the average knee flexion angle and load after ATR in one athlete. Caution should be exercised when applying the conclusions, and in the future, more participants should be recruited to establish personalized knee finite element models to validate the results.

14.
Front Bioeng Biotechnol ; 11: 1013100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798592

RESUMO

Background: Local muscle fatigue may have an adverse effect on the biomechanics of the lunge movement and athletic performance. This study analyzed the biomechanical indicators of the forward lunge in badminton players before and after fatigue of the ankle dorsiflexors. Methods: Using the isometric muscular strength testing system, 15 badminton players underwent an ankle dorsiflexor fatigue test. Before and after the fatigue experiment, five lunges were done in both the forehand forward (FH) and backhand forward (BH) directions, five in each direction. A Vicon motion capture system and an AMTI force measuring station were used to record lower limb kinematic and ground reaction force (GRF). Pre-fatigue and post-fatigue variability were determined using paired-samples t-tests, Wilcoxon signed rank test, and Statistical Non-parametric Mapping (SNPM). Result: The results showed that after fatigue, the peak angle of ankle dorsiflexion was significantly reduced (p = 0.034), the range of motion (ROM) of the ankle sagittal plane (p = 0.000) and peak angle of ankle plantarflexion (p = 0.001) was significantly increased after forehand landing. After fatigue, ankle inversion was significantly increased after forehand and backhand landings (FH: p = 0.033; BH: p = 0.015). After fatigue, peak knee flexion angles increased significantly (FH: Max: p = 0.000, Min: p = 0.000; BH: Max: p = 0.017, Min: p = 0.037) during forehand and backhand landings and ROM in knee flexion and extension increased (p = 0.009) during forehand landings. Knee inversion range of motion was significantly increased after fatigue (p = 0.024) during forehand landings. Peak hip flexion angle (p = 0.000) and range of motion (p = 0.000) were significantly reduced in forehand landings after fatigue. The mean loading rate (p = 0.005) and the maximum loading rate (p = 0.001) increased significantly during backhand landings after fatigue. Post-fatigue, the center of pressure (COP) frontal offset increased significantly (FH: p = 0.000; BH: p = 0.000) in the forehand and backhand landings. Conclusion: These results indicate that when the ankle dorsiflexors are fatigued, the performance of the forehand is significantly negatively affected, and the impact force of the backhand is greater.

15.
Healthcare (Basel) ; 11(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570418

RESUMO

To compare the efficacy of different recovery strategies (sitting; cold water immersion, CWI; vibration foam rolling, VFR) on the lower extremities of amateur basketball players after the simulated load of a basketball game, we assessed the power, agility, and dynamic balance before and after interventions. Ten amateur basketball players alternately underwent 12 min of sitting, 12 min of CWI at 5 °C, and 12 min of VFR. The power, agility, and dynamic balance were measured immediately post-warm-up, immediately post-game, immediately post-intervention, 1 h after interventions, and 24 h after interventions. To simulate the load of a basketball game, specific movements were designed and implemented. Jump height was measured using a Kistler force plate. Reaction time and dynamic balance score were assessed using the Pavigym agility response system and the Y balance test, respectively. The data were analyzed with a two-way repeated measures analysis of variance (ANOVA). The results showed that the vertical jump height significantly decreased after the CWI intervention compared to the CON and VFR groups (p < 0.001). At 1 h after the intervention, the vertical jump height in the CON group showed delayed recovery compared to the CWI and VFR groups (p = 0.007; p < 0.001). At 24 h after the intervention, the vertical jump height in the CWI group further increased and was significantly different from the CON and VFR groups (p < 0.001; p = 0.005). Additionally, reaction times significantly increased immediately after the CWI intervention (p = 0.004) but showed further recovery at 24 h compared to the CON group (p < 0.001). The dynamic balance score significantly rebounded after the CWI intervention compared to the CON group (p = 0.021), with further improvement at 24 h (p < 0.001). CWI initially showed negative effects, but over time, its recovery effect was superior and more long-lasting. VFR had the best immediate effect on lower limb recovery after the game.

16.
Front Physiol ; 14: 1034132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260595

RESUMO

Introduction: The changes in physical shape and center of mass during pregnancy may increase the risk of falls. However, there were few studies on the effects of maternal muscles on gait characteristics and no studies have attempted to investigate changes in induced acceleration during pregnancy. Further research in this area may help to reveal the causes of gait changes in women during pregnancy and provide ideas for the design of footwear and clothing for pregnant women. The purpose of this study is to compare gait characteristics and induced accelerations between non-pregnant and pregnant women using OpenSim musculoskeletal modeling techniques, and to analyze their impact on pregnancy gait. Methods: Forty healthy participants participated in this study, including 20 healthy non-pregnant and 20 pregnant women (32.25 ± 5.36 weeks). The portable gait analyzer was used to collect participants' conventional gait parameters. The adjusted OpenSim personalized musculoskeletal model analyzed the participants' kinematics, kinetics, and induced acceleration. Independent sample T-test and one-dimensional parameter statistical mapping analysis were used to compare the differences in gait characteristics between pregnant and non-pregnant women. Results: Compared to the control group, pregnancy had a 0.34 m reduction in mean walking speed (p < 0.01), a decrease in mean stride length of 0.19 m (p < 0.01), a decrease in mean stride frequency of 19.06 step/min (p < 0.01), a decrease in mean thigh acceleration of 0.14 m/s2 (p < 0.01), a decrease in mean swing work of 0.23 g (p < 0.01), and a decrease in mean leg falling strength of 0.84 g (p < 0.01). Induced acceleration analysis showed that pregnancy muscle-induced acceleration decreased in late pregnancy (p < 0.01), and the contribution of the gastrocnemius muscle to the hip and joint increased (p < 0.01). Discussion: Compared with non-pregnant women, the gait characteristics, movement amplitude, and joint moment of pregnant women changed significantly. This study observed for the first time that the pregnant women relied more on gluteus than quadriceps to extend their knee joints during walking compared with the control group. This change may be due to an adaptive change in body shape and mass during pregnancy.

17.
Enzyme Microb Technol ; 165: 110195, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764030

RESUMO

Zearalenone (ZEN) is one of the most common mycotoxins in maize, wheat, barley, sorghum, rye and other grains. ZEN contamination in feed is an international health issue due to its estrogenicity by competitively binding to estrogen receptors. Enzymatic detoxification of ZEN is superior to physical and chemical methods in terms of safety, environmental impact and preserving nutritional value and palatability, but is hampered by both the currently limited repertoire of detoxifying enzymes and the lack of knowledge about their structure-function relationships. In this study, a ZEN lacton hydrolase candidate (ZHD11C) was identified from thermo-tolerant Fonsecaea multimorphosa CBS 102226, and characterized to be more thermostable than these reported homologues. An intriguing feature of ZHD11C is that the N-terminal hydrophobicity affects its thermal stability and causes conformational change of a domain far from the N-terminal. This finding was successfully applied to enhance the thermostability of the most active ZEN lacton hydrolase ZHD518 through rationally tailoring its N-terminal hydrophobicity. Our results not only provide more insights into the structure-function relationships of ZEN lacton hydrolases, but generate better candidate for bio-decontamination of zearalenone in feed industries.


Assuntos
Zearalenona , Zearalenona/química , Zearalenona/metabolismo , Hidrolases/metabolismo , Engenharia de Proteínas
18.
Bioengineering (Basel) ; 9(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35877323

RESUMO

OBJECTIVE: The lunge squat is one of the exercises to strengthen the lower limbs, however, there is little evidence of the effects of different equipment. The purpose of this study was to investigate the biomechanical effects of different types of equipment and loads on the lunge squat's effect on the lower limbs. METHODS: Fourteen male fitness novices participated in the experiment. Kinematics and kinetics in the sagittal plane using dumbbells, barbells, and weighted vests were measured using OpenSim. Two-way repeated measures ANOVA and one-dimensional statistical parametric mapping were used in the statistical analysis (SPM1D). RESULTS: Range of motion (ROM) change in the knee joint was more obvious when using a barbell, whereas ROM when using a dumbbell was minimal. Compared to other joints, the joint moment at the hip joint was the largest and changed more significantly with increasing weight-bearing intensity, and the change was more pronounced with the dumbbell. For the center of pressure (COP) overall displacement, the dumbbell produced a smaller range of displacement. CONCLUSIONS: Dumbbells are suggested for male beginners to improve stability, barbells for the more experienced, and a low-weighted vest may be more appropriate for those with knee pain.

19.
Front Neurorobot ; 16: 832005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017416

RESUMO

Background: Barbell squats are commonly used in daily training and rehabilitation. Injuries are not common when the posture is standard, but the wrong posture can lead to injuries. Rearfoot valgus is a common foot abnormality that may increase the risk of injury during sports. The purpose of this study was to compare the biomechanics of lower limbs in normal foot and valgus patients during barbell squat. Methods: In this study, 10 participants with normal foot shape and 10 participants with rearfoot valgus were enrolled. The joint angle, joint moment, and range of motion of hip, knee, and ankle joints were collected under 0, 30, and 70% one-repetition maximum (RM) load, where discrete data are statistically analyzed using the independent sample t-test, and continuous data are statistically analyzed using one-dimensional parameter statistical mapping. Results: In barbell squats, the range of motion and the joint moment of the hip, knee, and ankle in the rearfoot valgus participants were significantly larger than those in normal foot participants (p < 0.05). The participants with rearfoot valgus had a more significant knee valgus angle when squatting to the deepest (p < 0.05). In addition, with the increase in load, the participants with rearfoot valgus showed greater standardized medial knee contact force (p < 0.05). In the process of barbell squats, the participants with rearfoot valgus showed no significant difference in the foot valgus angle when compared with the normal foot shape (p > 0.05). Conclusions: The valgus population showed a greater range of joint motion when performing barbell squats and showed genu valgus and greater medial knee contact force, which may increase the risk of musculoskeletal and soft tissue damage such as meniscus wear. In addition, there was no significant difference in the rearfoot valgus angle between people with rearfoot valgus and people with normal foot shape during squatting, so barbell squatting may correct valgus to a certain extent.

20.
Children (Basel) ; 9(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626898

RESUMO

As a simple and beneficial way of exercise, rope skipping is favored by the majority of teenagers, but incorrect rope skipping may lead to the risk of injury. In this study, 16 male adolescent subjects were tested for bounced jump skipping and alternating jump rope skipping. The kinematic data of the hip, knee, ankle and metatarsophalangeal joint of lower extremities and the kinetics data of lower extremity touching the ground during rope skipping were collected, respectively. Moreover, the electromyography (EMG) data of multiple muscles of the lower extremity were collected by Delsys wireless surface EMG tester. Results revealed that bounced jump (BJ) depicted a significantly smaller vertical ground reaction force (VGRF) than alternate jump (AJ) during the 11−82% of the ground-contact stage (p < 0.001), and the peak ground reaction force and average loading rate were significantly smaller than AJ. From the kinematic perspective, in the sagittal plane, when using BJ, the flexion angle of the hip joint was comparably larger at 12−76% of the ground-contact stage (p < 0.01) and the flexion angle of the knee joint was significantly larger at 13−72% of the ground-contact stage (p < 0.001). When using two rope skipping methods, the minimum dorsal extension angle of the metatarsophalangeal joint was more than 25°, and the maximum was even higher than 50°. In the frontal plane, when using AJ, the valgus angle of the knee joint was significantly larger during the whole ground-contact stage (p < 0.001), and the adduction angle of the metatarsophalangeal joint (MPJ) was significantly larger at 0−97% of the ground-contact stage (p = 0.001). EMG data showed that the standardized value of root mean square amplitude of the tibialis anterior and gastrocnemius lateral head of BJ was significantly higher than AJ. At the same time, that of semitendinosus and iliopsoas muscle was significantly lower. According to the above results, compared with AJ, teenagers receive less GRF and have a better landing buffer strategy to reduce load, and have less risk of injury during BJ. In addition, in BJ rope skipping, the lower limbs are more inclined to the calf muscle group force, while AJ is more inclined to the thigh muscle group force. We also found that in using two ways of rope skipping, the extreme metatarsophalangeal joint back extension angle could be a potential risk of injury for rope skipping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA