Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lancet Reg Health West Pac ; 37: 100792, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693871

RESUMO

Background: Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure. Methods: Here, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific antibody response data to classify recent and historical exposure to Plasmodium falciparum and Plasmodium vivax. To assess these methods, we utilized samples from a health-facility based survey (n = 9132) in the Philippines, where we quantified antibody responses against 8 P. falciparum and 6 P. vivax-specific antigens from 3 sites with varying transmission intensity. Findings: Measurements of antibody responses and seroprevalence were consistent with the 3 sites' known endemicity status. Among the models tested, a machine learning (ML) approach (Random Forest model) using 4 serological markers (PfGLURP R2, Etramp5.Ag1, GEXP18, and PfMSP119) gave better predictions for P. falciparum recent infection in Palawan (AUC: 0.9591, CI 0.9497-0.9684) than individual antigen seropositivity. Although the ML approach did not improve P. vivax infection predictions, ML classifications confirmed the absence of recent exposure to P. falciparum and P. vivax in both Occidental Mindoro and Bataan. For predicting historical P. falciparum and P. vivax transmission, seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed reliable trends in the 3 sites. Interpretation: Our study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national elimination setting, and also highlights the potential use of machine learning models using multiplex antibody responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines. Funding: Newton Fund, Philippine Council for Health Research and Development, UK Medical Research Council.

2.
Am J Trop Med Hyg ; 104(3): 968-978, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33534761

RESUMO

Following substantial progress in malaria control in the Philippines, new surveillance approaches are needed to identify and target residual malaria transmission. This study evaluated an enhanced surveillance approach using rolling cross-sectional surveys of all health facility attendees augmented with molecular diagnostics and geolocation. Facility surveys were carried out in three sites representing different transmission intensities: Morong, Bataan (pre-elimination), Abra de Ilog, Occidental Mindoro (stable medium risk), and Rizal, Palawan (high risk, control). Only one rapid diagnostic test (RDT)-positive infection and no PCR confirmed infections were found in Bataan and Occidental Mindoro, suggesting the absence of transmission. In Palawan, the inclusion of all health facility attendees, regardless of symptoms, and use of molecular diagnostics identified 313 infected individuals in addition to 300 cases identified by routine screening of febrile patients with the RDT or microscopy. Of these, the majority (313/613) were subpatent infections and only detected using molecular methods. Simultaneous collection of GPS coordinates on tablet-based applications allowed real-time mapping of malaria infections. Risk factor analysis showed higher risks in children and indigenous groups, with bed net use having a protective effect. Subpatent infections were more common in men and older age-groups. Overall, malaria risks were not associated with participants' classification, and some of the non-patient clinic attendees reported febrile illnesses (1.9%, 26/1,369), despite not seeking treatment, highlighting the widespread distribution of infection in communities. Together, these data illustrate the utility of health facility-based surveys to augment surveillance data to increase the probability of detecting infections in the wider community.


Assuntos
Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Instalações de Saúde/estatística & dados numéricos , Malária Falciparum/diagnóstico , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Vigilância da População/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Filipinas , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA