RESUMO
Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Proliferação de Células , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The PI3K/AKT/mTOR pathway activation plays a central role in glioblastoma multiforme (GBM) development and progression, and in resistance to anti-cancer therapies. Inhibition of the PI3K pathway has been shown to sensitize cultured glioma cells and tumor xenografts to the effects of temozolomide (TMZ) and radiation. Vistusertib is an oral inhibitor of mTORC1/2 complexes. The primary objective of this Canadian Cancer Trials Group phase I study was to determine the recommended phase II dose (RP2D) of vistusertib in patients with GBM receiving TMZ at first progression following primary treatment. Vistusertib was administered at a starting dose of 100 mg bid 2 days on/5 days off weekly with TMZ 150 mg/m2 daily for 5 days/28-days cycle. Dose escalation was according to a 3 + 3 design. Secondary objectives included assessment of vistusertib safety and toxicity profile, and preliminary efficacy. 15 patients were enrolled in the study (median age 66 (range 51-77), females 8). Vistusertib 125 mg BID in combination with TMZ 150 mg/m2 daily for 5 days was well tolerated. Vistusertib treatment-related adverse events were generally grade 1-2, with the most frequently reported being fatigue, gastrointestinal symptoms, and rash. Of 13 response evaluable patients, 1 patient (8%) had a partial response ongoing at 7.6 months of follow-up, and 5 patients had stable disease (38%) as best response (median duration 9.6 months, range 3.7-not yet reached). Six-month progression-free survival (PFS) rate was 26.6%. Combination of vistusertib with TMZ in GBM patients at first recurrence demonstrated a favorable safety profile at the tested dose levels.
Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzamidas/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Morfolinas/administração & dosagem , Pirimidinas/administração & dosagem , Temozolomida/administração & dosagem , Idoso , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzamidas/efeitos adversos , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Morfolinas/efeitos adversos , Pirimidinas/efeitos adversos , Temozolomida/efeitos adversosRESUMO
IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.
Assuntos
Epigenômica , Amplificação de Genes , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia/genética , Deleção de Sequência , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Perfilação da Expressão Gênica , Glioma/patologia , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Tumorais CultivadasRESUMO
Although various lines of evidence suggest that oxidative stress plays a role in human prostate cancer initiation and progression, there is a paucity of direct evidence for its role in tumor initiation. To begin to address this issue, we developed a novel tumorigenesis model by reducing the expression of multiple selenoproteins (SPs) in mouse prostatic epithelium. This was accomplished via the prostate-specific deletion of Trsp, a gene that encodes a transfer RNA (Sec tRNA) required for the insertion of selenocysteine residues into SPs during their translation. By 6 weeks of age, Trsp-deficient mice exhibited widespread prostatic intraepithelial neoplasia lesions in all prostatic lobes, which then progressed to high-grade dysplasia and microinvasive carcinoma by 24 weeks. In contrast to other murine prostate cancer models, Trsp-deficient mice required neither the deletion of a tumor suppressor nor the transgenic introduction of an oncogene for prostatic intraepithelial neoplasia lesion development. In keeping with the antioxidant functions of several SPs, we found increases in lipid peroxidation markers in Trsp-deficient epithelial cells. This novel model of prostate neoplasia provides evidence for the existence of a selenoprotein or selenoproteins capable of acting as a tumor suppressor in the murine prostate.
Assuntos
Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/genética , RNA de Transferência Aminoácido-Específico/genética , Animais , Progressão da Doença , Epitélio/patologia , Deleção de Genes , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Estresse Oxidativo , Próstata/patologia , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/patologia , Selenoproteínas/genéticaRESUMO
Oligodendroglioma is characterized by mutations of IDH and CIC, 1p/19q loss, and slow growth. We found that NHE-1 on 1p is silenced in oligodendrogliomas secondary to IDH-associated hypermethylation and 1p allelic loss. Silencing lowers intracellular pH and attenuates acid load recovery in oligodendroglioma cells. Others have shown that rapid tumor growth cannot occur without NHE-1-mediated neutralization of the acidosis generated by the Warburg glycolytic shift. Our findings show for the first time that the pH regulator NHE-1 can be silenced in a human cancer and also suggest that pH deregulation may contribute to the distinctive biology of human oligodendroglioma.
Assuntos
Neoplasias Encefálicas/genética , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Metilação de DNA , Mutação/genética , Oligodendroglioma/genética , Trocadores de Sódio-Hidrogênio/genética , Neoplasias Encefálicas/patologia , Humanos , Oligodendroglioma/patologia , Prótons , Células Tumorais CultivadasRESUMO
Histone deacetylases are important epigenetic regulators that have been reported to play essential roles in cancer stem cell functions and are promising therapeutic targets in many cancers including glioblastoma. However, the functionally relevant roles of specific histone deacetylases, in the maintenance of key self-renewal and growth characteristics of brain tumour stem cell (BTSC) sub-populations of glioblastoma, remain to be fully resolved. Here, using pharmacological inhibition and genetic loss and gain of function approaches, we identify HDAC2 as the most relevant histone deacetylase for re-organization of chromatin accessibility resulting in maintenance of BTSC growth and self-renewal properties. Furthermore, its specific interaction with the transforming growth factor-ß pathway related proteins, SMAD3 and SKI, is crucial for the maintenance of tumorigenic potential in BTSCs in vitro and in orthotopic xenograft models. Inhibition of HDAC2 activity and disruption of the coordinated mechanisms regulated by the HDAC2-SMAD3-SKI axis are thus promising therapeutic approaches for targeting BTSCs.
Assuntos
Neoplasias do Tronco Encefálico , Glioblastoma , Humanos , Glioblastoma/genética , Encéfalo , Histona Desacetilases/genética , Células-Tronco Neoplásicas , Epigênese Genética , Proteína Smad3/genética , Histona Desacetilase 2/genéticaRESUMO
BACKGROUND: Telomerase reverse transcriptase (TERT) is essential for tumor proliferation, including in low-grade oligodendrogliomas (LGOGs). Since TERT is silenced in normal cells, it is also a therapeutic target. Therefore, noninvasive methods of imaging TERT are needed. Here, we examined the link between TERT expression and metabolism in LGOGs, with the goal of leveraging this information for noninvasive magnetic resonance spectroscopy (MRS)-based metabolic imaging of LGOGs. METHODS: Immortalized normal human astrocytes with doxycycline-inducible TERT silencing, patient-derived LGOG cells, orthotopic tumors, and LGOG patient biopsies were studied to determine the mechanistic link between TERT expression and glucose metabolism. The ability of hyperpolarized [U-13C, U-2H]-glucose to noninvasively assess TERT expression was tested in live cells and orthotopic tumors. RESULTS: TERT expression was associated with elevated glucose flux through the pentose phosphate pathway (PPP), elevated NADPH, which is a major product of the PPP, and elevated glutathione, which is maintained in a reduced state by NADPH. Importantly, hyperpolarized [U-13C, U-2H]-glucose metabolism via the PPP noninvasively reported on TERT expression and response to TERT inhibition in patient-derived LGOG cells and orthotopic tumors. Mechanistically, TERT acted via the sirtuin SIRT2 to upregulate the glucose transporter GLUT1 and the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase. CONCLUSIONS: We have, for the first time, leveraged a mechanistic understanding of TERT-associated metabolic reprogramming for noninvasive imaging of LGOGs using hyperpolarized [U-13C, U-2H]-glucose. Our findings provide a novel way of imaging a hallmark of tumor immortality and have the potential to improve diagnosis and treatment response assessment for LGOG patients.
Assuntos
Oligodendroglioma , Telomerase , Glucose , Humanos , Espectroscopia de Ressonância Magnética , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Via de Pentose Fosfato , Telomerase/genética , Telomerase/metabolismoRESUMO
Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
Assuntos
Neoplasias Encefálicas/genética , Homeostase do Telômero , Telômero/metabolismo , Alanina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Engenharia Genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Ácido Láctico/metabolismo , Masculino , Metaboloma , Modelos Biológicos , Gradação de Tumores , Proteínas de Neoplasias/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Nus , Telomerase/genética , Telomerase/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Brain tumorinitiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs. Phosphorylation of tyrosines within the cytoplasmic tail of PD-1 recruited Src homology 2containing phosphatase 2 and activated the nuclear factor kB in BTICs. Notably, the tumor-intrinsic promoting effects of PD-1 did not require programmed cell death ligand 1(PD-L1) ligation; thus, the therapeutic antibodies inhibiting PD-1/PD-L1 interaction could not overcome the growth advantage of PD-1 in BTICs. Last, BTIC-intrinsic PD-1 accelerated intracranial tumor growth, and this occurred in mice lacking T and B cells. These findings point to a critical role for PD-1 in BTICs and uncover a nonimmune resistance mechanism of patients with glioblastoma to PD-1 or PD-L1blocking therapies.
RESUMO
Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In-depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.
Assuntos
Autorrenovação Celular , Cromatina/metabolismo , Glioblastoma/secundário , Células-Tronco Neoplásicas/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Análise de Célula ÚnicaRESUMO
Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas/metabolismoRESUMO
BACKGROUND: The EGFR pathway is frequently mutated in glioblastoma (GBM). However, to date, EGFR therapies have not demonstrated efficacy in clinical trials. Poor brain penetration of conventional inhibitors, lack of patient stratification for EGFR status, and mechanisms of resistance are likely responsible for the failure of EGFR-targeted therapy. We aimed to address these elements in a large panel of molecularly diverse patient-derived GBM brain tumor stem cells (BTSCs). METHODS: In vitro growth inhibition and on-target efficacy of afatinib, pacritinib, or a combination were assessed by cell viability, neurosphere formation, cytotoxicity, limiting dilution assays, and western blotting. In vivo efficacy was assessed with mass spectrometry, immunohistochemistry, magnetic resonance imaging, and intracranial xenograft models. RESULTS: We show that afatinib and pacritinib decreased BTSC growth and sphere-forming capacity in vitro. Combinations of the 2 drugs were synergistic and abrogated the activation of STAT3 signaling observed upon EGFR inhibition in vitro and in vivo. We further demonstrate that the brain-penetrant EGFR inhibitor, afatinib, improved survival in EGFRvIII mt orthotopic xenograft models. However, upregulation of the oncogenic STAT3 signaling pathway was observed following afatinib treatment. Combined inhibition with 2 clinically relevant drugs, afatinib and pacritinib, synergistically decreased BTSC viability and abrogated this compensatory mechanism of resistance to EGFR inhibition. A significant decrease in tumor burden in vivo was observed with the combinatorial treatment. CONCLUSIONS: These data demonstrate that brain-penetrant combinatorial therapies targeting the EGFR and STAT3 signaling pathways hold therapeutic promise for GBM.
RESUMO
Cancer cells can metabolize glutamine to replenish TCA cycle intermediates, leading to a dependence on glutaminolysis for cell survival. However, a mechanistic understanding of the role that glutamine metabolism has on the survival of glioblastoma (GBM) brain tumor stem cells (BTSC) has not yet been elucidated. Here, we report that across a panel of 19 GBM BTSC lines, inhibition of glutaminase (GLS) showed a variable response from complete blockade of cell growth to absolute resistance. Surprisingly, BTSC sensitivity to GLS inhibition was a result of reduced intracellular glutamate triggering the amino acid deprivation response (AADR) and not due to the contribution of glutaminolysis to the TCA cycle. Moreover, BTSC sensitivity to GLS inhibition negatively correlated with expression of the astrocytic glutamate transporters EAAT1 and EAAT2. Blocking glutamate transport in BTSCs with high EAAT1/EAAT2 expression rendered cells susceptible to GLS inhibition, triggering the AADR and limiting cell growth. These findings uncover a unique metabolic vulnerability in BTSCs and support the therapeutic targeting of upstream activators and downstream effectors of the AADR pathway in GBM. Moreover, they demonstrate that gene expression patterns reflecting the cellular hierarchy of the tissue of origin can alter the metabolic requirements of the cancer stem cell population. SIGNIFICANCE: Glioblastoma brain tumor stem cells with low astrocytic glutamate transporter expression are dependent on GLS to maintain intracellular glutamate to prevent the amino acid deprivation response and cell death.
Assuntos
Aminoácidos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glutaminase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Astrócitos/metabolismo , Benzenoacetamidas/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Glioblastoma/patologia , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Humanos , Tiadiazóis/farmacologiaRESUMO
In glioblastoma (GBM), brain tumor stem cells (BTSCs) encompass heterogenous populations of multipotent, self-renewing, and tumorigenic cells, which have been proposed to be at the root of therapeutic resistance and recurrence. While the functional significance of BTSC heterogeneity remains to be fully determined, we previously distinguished relatively quiescent stem-like precursor state from the more aggressive progenitor-like precursor state. In the present study, we hypothesized that progenitor-like BTSCs arise from stem-like precursors through a mesenchymal transition and drive post-treatment recurrence. We first demonstrate that progenitor-like BTSCs display a more mesenchymal transcriptomic profile. Moreover, we show that both mesenchymal GBMs and progenitor-like BTSCs are characterized by over-activated STAT3/EMT pathways and that SLUG is the primary epithelial to mesenchymal transition (EMT) transcription factor directly regulated by STAT3 in BTSCs. SLUG overexpression in BTSCs enhances invasiveness, promotes inflammation, and shortens survival. Importantly, SLUG overexpression in a quiescent stem-like BTSC line enhances tumorigenesis. Finally, we report that recurrence is associated with SLUG-induced transcriptional changes in both BTSCs and GBM patient samples. Collectively, our findings show that a STAT3-driven precursor state transition, mediated by SLUG, may prime BTSCs to initiate more aggressive mesenchymal recurrence. Targeting the STAT3/SLUG pathway may maintain BTSCs in a quiescent stem-like precursor state, delaying recurrence and improving survival in GBM.
RESUMO
Glioblastoma therapies have remained elusive due to limitations in understanding mechanisms of growth and survival of the tumorigenic population. Using CRISPR-Cas9 approaches in patient-derived GBM stem cells (GSCs) to interrogate function of the coding genome, we identify actionable pathways responsible for growth, which reveal the gene-essential circuitry of GBM stemness and proliferation. In particular, we characterize members of the SOX transcription factor family, SOCS3, USP8, and DOT1L, and protein ufmylation as important for GSC growth. Additionally, we reveal mechanisms of temozolomide resistance that could lead to combination strategies. By reaching beyond static genome analysis of bulk tumors, with a genome-wide functional approach, we reveal genetic dependencies within a broad range of biological processes to provide increased understanding of GBM growth and treatment resistance.
Assuntos
Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Temozolomida/farmacologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Histona Metiltransferases/metabolismo , Humanos , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Análise de Sobrevida , Temozolomida/uso terapêutico , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, incurable cancer with a 20% 1 year survival rate. While standard-of-care therapy can prolong life in a small fraction of cases, PDAC is inherently resistant to current treatments, and novel therapies are urgently required. Histone deacetylase (HDAC) inhibitors are effective in killing pancreatic cancer cells in in vitro PDAC studies, and although there are a few clinical studies investigating combination therapy including HDAC inhibitors, no HDAC drug or combination therapy with an HDAC drug has been approved for the treatment of PDAC. We developed an inhibitor of HDACs, AES-135, that exhibits nanomolar inhibitory activity against HDAC3, HDAC6, and HDAC11 in biochemical assays. In a three-dimensional coculture model, AES-135 kills low-passage patient-derived tumor spheroids selectively over surrounding cancer-associated fibroblasts and has excellent pharmacokinetic properties in vivo. In an orthotopic murine model of pancreatic cancer, AES-135 prolongs survival significantly, therefore representing a candidate for further preclinical testing.
Assuntos
Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Ácidos Hidroxâmicos/química , Neoplasias Pancreáticas/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacocinética , Hidrocarbonetos Fluorados/uso terapêutico , Camundongos , Neoplasias Pancreáticas/patologia , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêuticoRESUMO
Employing the Hprt locus as the site for targeted transgenesis we have developed mice expressing the tamoxifen-inducible Cre-ER(T2) fusion protein under the control of the ARR2-rat probasin promoter. This system enables external control over the timing of prostate epithelial cell-specific gene alterations. Using both the ROSA26-lacZ and ROSA26-EYFP reporter strains to monitor recombinase activity, Cre-ER(T2) was found to be specifically expressed in the prostatic epithelium and was strictly tamoxifen dependent. This strain thus allows precise control over the timing of gene alterations in the mouse prostate, enabling analyses of the phenotypic consequences of gene alterations in mice of any age. It also provides an ideal platform to study the impact of environmental, hormonal, and age-related factors on prostate tumorigenesis. This latter feature will be of particular value given the paucity of murine models that accurately mimic the late onset and prolonged natural history of human prostate cancer.
Assuntos
Epitélio/metabolismo , Técnicas de Transferência de Genes , Próstata/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias da Próstata/genética , RatosRESUMO
It has been proposed that O(6)-methylguanine DNA methyltransferase (MGMT) gene silencing in premalignant lesions and cancers of the lung might result in the acquisition of a 'mutator' phenotype. Previously, however, we found that Mgmt(-/-) mouse DNA failed to show an increase in spontaneous mutations. We thus hypothesized that only during exposure to specific environmental carcinogens would the consequences of MGMT deficiency become evident. Metabolism of the tobacco-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) generates alkylating species that can react with the O(6) position of deoxyguanine, thereby yielding substrates for MGMT-mediated repair. To investigate how MGMT might regulate the mutational effects of NNK, Mgmt(-/-) mice were crossed with a lacI-based transgenic reporter line (Big Blue) thus enabling an assessment of the in vivo mutagenic effects of this agent. We observed the induction of a complex spectrum of NNK-dependent lacI mutations in both control and Mgmt(-/-) tissues, but only a trend in the mutant frequency increases that could be attributed to MGMT deficiency. The mutational spectra of NNK-treated Mgmt(-/-) lungs revealed an increase in the absolute number of G:C to A:T changes accompanied by a shift in these from CpG to GpG sites, consistent with an S(N)1 alkylation mechanism. In keeping with the high levels of MGMT expressed in the liver, more pronounced mutagenic effects and greater differences in O(6) position of deoxyguanosine adduct levels following NNK were observed in Mgmt(-/-) versus wild-type mice. Extrapolating to humans, MGMT-deficient cells would likely exhibit an increased mutational burden, but only following exposures to specific environmental mutagens such as NNK.
Assuntos
Metilases de Modificação do DNA/deficiência , Enzimas Reparadoras do DNA/deficiência , Nitrosaminas/toxicidade , Proteínas Supressoras de Tumor/deficiência , Animais , Carcinógenos/toxicidade , Cruzamentos Genéticos , DNA/genética , DNA/isolamento & purificação , Metilases de Modificação do DNA/genética , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/genética , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas Supressoras de Tumor/genéticaRESUMO
Glioblastoma (GBM) is an aggressive brain tumor that is poorly controlled with the currently available treatment options. Key features of GBMs include rapid proliferation and pervasive invasion into the normal brain. Recurrence is thought to result from the presence of radio- and chemo-resistant brain tumor stem cells (BTSCs) that invade away from the initial cancerous mass and, thus, evade surgical resection. Hence, therapies that target BTSCs and their invasive abilities may improve the otherwise poor prognosis of this disease. Our group and others have successfully established and characterized BTSC cultures from GBM patient samples. These BTSC cultures demonstrate fundamental cancer stem cell properties such as clonogenic self-renewal, multi-lineage differentiation, and tumor initiation in immune-deficient mice. In order to improve on the current therapeutic approaches for GBM, a better understanding of the mechanisms of BTSC migration and invasion is necessary. In GBM, the study of migration and invasion is restricted, in part, due to the limitations of existing techniques which do not fully account for the in vitro growth characteristics of BTSCs grown as neurospheres. Here, we describe rapid and quantitative live-cell imaging assays to study both the migration and invasion properties of BTSCs. The first method described is the BTSC migration assay which measures the migration toward a chemoattractant gradient. The second method described is the BTSC invasion assay which images and quantifies a cellular invasion from neurospheres into a matrix. The assays described here are used for the quantification of BTSC migration and invasion over time and under different treatment conditions.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/patologia , Glioblastoma/diagnóstico por imagem , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologiaRESUMO
Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.