Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(3): 45, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349430

RESUMO

BACKGROUND: Aggressive B cell lymphoma with secondary central nervous system (CNS) involvement (SCNSL) carries a dismal prognosis. Chimeric antigen receptor (CAR) T cells (CAR-T) targeting CD19 have revolutionized the treatment for B cell lymphomas; however, only single cases with CNS manifestations successfully treated with CD19 CAR-T have been reported. METHODS: We prospectively enrolled 4 patients with SCNSL into our study to assess clinical responses and monitor T cell immunity. RESULTS: Two of four SNCSL patients responded to the CD19-targeted CAR-T. Only one patient showed a substantial expansion of peripheral (PB) CAR-T cells with an almost 100-fold increase within the first week after CAR-T. The same patient also showed marked neurotoxicity and progression of the SNCSL despite continuous surface expression of CD19 on the lymphoma cells and an accumulation of CD4+ central memory-type CAR-T cells in the CNS. Our studies indicate that the local production of chemokine IP-10, possibly through its receptor CXCR3 expressed on our patient's CAR-T, could potentially have mediated the local accumulation of functionally suboptimal anti-tumor T cells. CONCLUSIONS: Our results demonstrate expansion and homing of CAR-T cells into the CNS in SNCSL patients. Local production of chemokines such as IP-10 may support CNS infiltration by CAR-T cells but also carry the potential of amplifying local toxicity. Future studies investigating numbers, phenotype, and function of CAR-T in the different body compartments of SNSCL patients receiving CAR-T will help to improve local delivery of "fit" and highly tumor-reactive CAR-T with low off-target reactivity into the CNS.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Receptores de Antígenos Quiméricos , Humanos , Quimiocina CXCL10 , Neoplasias do Sistema Nervoso Central/terapia , Antígenos CD19
2.
Cytotherapy ; 26(4): 318-324, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340107

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell (CAR-T) therapies have revolutionized the treatment of B-cell lymphomas. Unfortunately, relapses after CD19-targeted CAR-T are relatively common and, therefore, there is a critical need for assays able to assess the function and potency of CAR-T products pre-infusion, which will hopefully help to optimize CAR-T therapies. We developed a novel multicolor fluorescent spot assay (MFSA) for the functional assessment of CAR-T products on a single-cell level, combining the numerical assessment of CAR-T products with their functional characterization. METHODS: We first used a standard single-cell interferon (IFN)-γ enzyme-linked immune absorbent spot assay to measure CD19-targeted CAR-T responses to CD19-coated beads. We then developed, optimized and validated an MFSA that simultaneously measures the secretion of combinations of different cytokines on a single CAR-T level. RESULTS: We identified IFN-γ/tumor necrosis factor-α/granzyme B as the most relevant cytokine combination, and we used our novel MFSA to functionally and numerically characterize two clinical-grade CAR-T products. CONCLUSIONS: In conclusion, we have developed a novel assay for the quantitative and functional potency assessment of CAR-T products. Our optimized MFSA is cost-effective, easy to perform, reliable, can be performed overnight, allowing for a fast delivery of the product to the patient, and requires relatively minimal maintenance and training. The clinical value of our novel assay will be assessed in studies correlating the pre-infusion assessment of CAR-T products with the patients' outcome in a prospective fashion.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Recidiva Local de Neoplasia , Imunoterapia Adotiva , Citocinas , Antígenos CD19 , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética
3.
Semin Cancer Biol ; 52(Pt 2): 198-206, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29775689

RESUMO

In the past few years we have seen remarkable paradigm shifts in the treatment of many solid tumors due to the introduction of inhibitors targeting immune checkpoints such as PD-1/PD-L1 and CTLA-4. Recent results indicate that checkpoint inhibition also represents a very promising approach for certain types of hematologic malignancies. Unfortunately, treatment with checkpoint inhibitors is also associated with substantial toxicities and high costs and only a subset of patients appears to derive clinical benefit from these treatments. This demonstrates the urgent need for biomarkers for the identification of patient populations that are likely to respond to this type of therapy and/or have fewer side effects. Here, we have reviewed available information on the prognostic and predictive value of biomarkers for anti-CTLA-4 and anti-PD-1/PD-L1 as the most commonly used checkpoint inhibitors. There are currently no reliable biomarkers capable of predicting responses to anti-CTLA-4 agents, such as ipilimumab, in hematologic malignancies. Certain polymorphisms in the CTLA-4 gene, however, seem to have an impact on the patients' outcome, especially in the case of chronic lymphocytic leukemia (CLL). There is now sufficient data supporting PD-L1 expression levels in the tumor tissue as an independent prognostic factor in B cell lymphomas such as diffuse large B-cell lymphoma (DLBCL). Overexpression of PD-L1 in the tumor tissue and elevated serum levels of soluble PD-L1 may also represent adverse prognostic factors in certain subtypes of T cell lymphomas. Finally, expression levels of PD-L1 also seem to predict responses to anti-PD-1/PD-L1 approaches in patients with Hodgkin lymphoma. Future studies will have to further delineate the prognostic/predictive role of PD-L1 expression as a biomarker in hematologic malignancies and may be able to identify confounding variables, which will hopefully to some extent be generalizable to other types of anti-tumor immunotherapies.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Imunoterapia/métodos , Prognóstico , Receptor de Morte Celular Programada 1/imunologia
4.
Clin Immunol ; 204: 69-73, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30326256

RESUMO

The outcome of Multiple Myeloma (MM) patients has dramatically improved, however, most patients will still succumb to their disease. Additional therapeutic options are urgently needed and novel immunotherapies are enormously promising in the therapeutic armamentarium against MM. The first step in the development of any immunotherapy needs to be the identification of an appropriate target structure. In this review we present the current knowledge on surface molecule CD229, a member of the Signaling Lymphocyte Activation (SLAM) family of immune receptors. We believe that based on its characteristics, including (1) strong and homogenous expression on all myeloma cells, (2) expression on myeloma precursors, (3) absence from most normal tissues, (4) a central function in the biology of MM, CD229 (SLAMF3) represents a promising target for anti-MM immunotherapies. The introduction of novel anti-CD229 approaches into the clinic will hopefully lead to more durable responses, or maybe even cures, in MM.


Assuntos
Mieloma Múltiplo/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Animais , Humanos
8.
Oncology (Williston Park) ; 31(1): 55-63, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28090624

RESUMO

The introduction of cellular immunotherapies using genetically modified T cells has revolutionized the treatment of patients with B-cell lymphomas. However, despite the progress made in this field, similarly effective immunotherapeutic approaches have not yet been identified for patients with solid tumors or other hematologic malignancies such as multiple myeloma. Here we outline the most promising novel cellular immune strategies for patients with multiple myeloma. In addition, we highlight combinatorial approaches that, it is hoped, will further optimize cellular immunotherapies for myeloma and lead to deep and durable responses and, possibly, even cures.


Assuntos
Imunoterapia/métodos , Mieloma Múltiplo/terapia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mieloma Múltiplo/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
9.
Br J Haematol ; 172(5): 685-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26791002

RESUMO

The introduction of chimeric antigen receptor (CAR)-modified T cells has revolutionized immunotherapy and cancer treatment as a whole. However, so far, clinical efficacy has only been demonstrated for CD19-positive B cell lymphomas. For Multiple Myeloma (MM), the second most common haematological malignancy, there are currently no clinical results supporting the usefulness of the adoptive transfer of CAR-modified T cells. This might be related to the fact that an ideal surface target has not yet been identified or the presence of strong local immunosuppression in the tumour microenvironment, which is a hallmark of MM. In this review, we provide a comprehensive overview of promising target molecules for CAR T cell approaches in MM and we outline a number of ways in which the local immunosuppression in MM can be overcome. By providing a strategy for the design of CAR T cell treatments for MM we hope to transform this new therapeutic approach into a valuable tool within the therapeutic armamentarium for MM.


Assuntos
Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/transplante , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Mieloma Múltiplo/imunologia , Proteínas Recombinantes de Fusão/imunologia
10.
Br J Haematol ; 171(5): 752-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456863

RESUMO

Cancer-testis antigens belonging to the MAGE family of genes, such as MAGEC2, are commonly and specifically expressed in Multiple Myeloma (MM) and are associated with a more aggressive clinical course and chemotherapy resistance. MAGEC2 is thought to be an excellent candidate for cancer immunotherapy; however, the biological role of MAGEC2 in MM has remained unclear. We investigated the biological role of MAGEC2 in myeloma cells determining the effect of MAGEC2 knockdown on proliferation and apoptosis. Loss of MAGEC2 resulted in reduced proliferation, viability, and anchorage-independent growth of myeloma cells irrespective of the functional status of TP53 (p53). The anti-proliferative effect of MAGEC2 silencing was due to a decrease of cells in the S phase, cell cycle delay at both G0/G1 and/or G2/M, and an increase in the sub-G0/G1 diploid population related to apoptotic cell death. Importantly, overexpression of short hairpin (sh)RNA-refractory MAGEC2 rescued the anti-proliferative effect of mRNA knockdown and protected cells from apoptotic cell death. Our findings support a TP53-independent role of MAGEC2 in promoting the survival of myeloma cells suggesting that MAGEC2-specific immunotherapies have the potential to eradicate the most malignant cells within the myeloma tumour bulk leading to durable clinical responses.


Assuntos
Antígenos de Neoplasias/fisiologia , Apoptose/fisiologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/fisiologia , Antígenos de Neoplasias/genética , Ciclo Celular/genética , Crescimento Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Proteína Supressora de Tumor p53/fisiologia
11.
J Transl Med ; 13: 197, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26088750

RESUMO

BACKGROUND: Most patients with multiple myeloma (MM) will relapse after an initial response and eventually succumb to their disease. This is due to the persistence of chemotherapy-resistant tumor cells in the patients' bone marrow (BM) and immunotherapeutic approaches could contribute to eradicating these remaining cells. We evaluated SLLP1 as a potential immunotherapeutic target for MM. METHODS: We determined SLLP1 expression in myeloma cell lines and 394 BM samples from myeloma patients (n = 177) and BM samples from healthy donors (n = 11). 896 blood samples and 64 BM samples from myeloma patients (n = 263) and blood from healthy donors (n = 112) were analyzed for anti-SLLP1 antibodies. Seropositive patients were evaluated regarding SLLP1-specific T cells. RESULTS: Most cell lines showed SLLP1 RNA and protein expression while it was absent from normal BM. Of 177 patients 41% evidenced SLLP1 expression at least once during the course of their disease and 44% of newly diagnosed patients were SLLP1-positive. Expression of SLLP1 was associated with adverse cytogenetics and with negative prognostic factors including the patient's age, number of BM-infiltrating plasma cells, serum albumin, ß2-microglobulin, creatinine, and hemoglobin. Among patients treated with allogeneic stem cell transplantation those with SLLP1 expression showed a trend towards a reduced overall survival. Spontaneous anti-SLLP humoral immunity was detectable in 9.5% of patients but none of the seropositive patients evidenced SLLP1-specific T cells. However, antigen-specific T cells could readily be induced in vitro after stimulation with SLLP1. CONCLUSIONS: SLLP1 represents a promising target for the immunotherapy of MM, in particular for the adoptive transfer of T cell receptor-transduced T cells.


Assuntos
Imunoterapia , Isoantígenos/metabolismo , Terapia de Alvo Molecular , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Proteínas de Plasma Seminal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Formação de Anticorpos/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mieloma Múltiplo/patologia , Fenótipo , Prognóstico , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/imunologia , Transplante Homólogo
12.
Int J Cancer ; 135(5): 1142-52, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24482145

RESUMO

The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. The identification of high-risk subgroups is needed for the development of custom-tailored therapies. The expression of cancer-testis antigens (CTAs) has been linked to a worse prognosis in other cancer types; however, their prognostic value in HNSCC is unclear because only few patients have been examined and data on CTA protein expression are sparse. A tissue microarray consisting of tumor samples from 453 HNSCC patients was evaluated for the expression of CTA proteins using immunohistochemistry. Frequency of expression and the subcellular expression pattern (nuclear, cytoplasmic, or both) was recorded. Protein expression of melanoma antigen (MAGE)-A family CTA, MAGE-C family CTA and NY-ESO-1 was found in approximately 30, 7 and 4% of tumors, respectively. The subcellular expression pattern in particular had a marked impact on the patients' prognosis. Median overall survival (OS) of patients with (i) simultaneous cytoplasmic and nuclear expression compared to (ii) either cytoplasmic or nuclear expression and (iii) negative patients was 23.0 versus 109.0 versus 102.5 months, for pan-MAGE (p < 0.0001), 46.6 versus 50.0 versus 109.0 for MAGE-A3/A4 (p = 0.0074) and 13.3 versus 50.0 versus 100.2 months for NY-ESO-1 (p = 0.0019). By multivariate analysis, these factors were confirmed as independent markers for poor survival. HNSCC patients showing protein expression of MAGE-A family members or NY-ESO-1 represent a subgroup with an extraordinarily poor survival. The development of immunotherapeutic strategies targeting these CTA may, therefore, be a promising approach to improve the outcome of HNSCC patients.


Assuntos
Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/biossíntese , Carcinoma de Células Escamosas/mortalidade , Neoplasias de Cabeça e Pescoço/mortalidade , Antígenos Específicos de Melanoma/biossíntese , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/imunologia , Adulto , Idoso , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Citoplasma/imunologia , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/imunologia , Prognóstico , Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço
13.
Cancer Immunol Immunother ; 63(11): 1151-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25078248

RESUMO

BACKGROUND: Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer-testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM. METHODS: Frequency and characteristics of antibody responses against cancer-testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients. RESULTS: We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-2(85-90). CONCLUSIONS: We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.


Assuntos
Antígenos de Neoplasias/imunologia , Autoanticorpos/imunologia , Transplante de Células-Tronco Hematopoéticas , Proteínas de Membrana/imunologia , Mieloma Múltiplo/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Repressoras/imunologia , Adulto , Idoso , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Ativação do Complemento , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/terapia , Reação em Cadeia da Polimerase em Tempo Real , Transplante Homólogo
14.
Mediators Inflamm ; 2014: 418292, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24757283

RESUMO

Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ + T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T Reguladores/citologia , Células Th1/citologia , Linhagem da Célula , Células HL-60 , Humanos , Inflamação , Células K562 , L-Lactato Desidrogenase/metabolismo , Leucemia/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenótipo , Transplante de Células-Tronco , Transplante Homólogo
15.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915559

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has shown remarkable efficacy in cancer treatment. Still, most patients receiving CAR T cells relapse within 5 years of treatment. CAR-mediated trogocytosis (CMT) is a potential tumor escape mechanism in which cell surface proteins transfer from tumor cells to CAR T cells. CMT results in the emergence of antigen-negative tumor cells, which can evade future CAR detection, and antigen-positive CAR T cells, which is hypothesized to lead to CAR T cell fratricide and dysfunction. Using a system to selectively degrade trogocytosed antigen in CAR T cells, we show that the presence of trogocytosed antigen in CAR T cells directly causes CAR T cell fratricide and exhaustion. By performing a small molecule screening using a custom high throughput CMT-screening assay, we identified the cysteine protease cathepsin B (CTSB) as a key driver of CMT. We show that overexpression of cystatin A (CSTA), an endogenous human inhibitor of CTSB, reduces trogocytosis resulting in prolonged antitumor activity and increased CAR T cell expansion/persistence. Overall, we show that targeting CMT is an effective approach to enhance CAR T cell function, which may improve their clinical efficacy.

16.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370665

RESUMO

Chimeric antigen receptor (CAR) T cells are an effective treatment for some blood cancers. However, the lack of tumor-specific surface antigens limits their wider use. We identified a set of surface antigens that are limited in their expression to cancer and the central nervous system (CNS). We developed CAR T cells against one of these antigens, LINGO1, which is widely expressed in Ewing sarcoma (ES). To prevent CNS targeting, we engineered LINGO1 CAR T cells lacking integrin α4 (A4ko), an adhesion molecule essential for migration across the blood-brain barrier. A4ko LINGO1 CAR T cells were efficiently excluded from the CNS but retained efficacy against ES. We show that altering adhesion behavior expands the set of surface antigens targetable by CAR T cells.

17.
Sci Transl Med ; 15(705): eadd7900, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467316

RESUMO

T cells expressing chimeric antigen receptors (CARs) have shown remarkable therapeutic activity against different types of cancer. However, the wider use of CAR T cells has been hindered by the potential for life-threatening toxicities due to on-target off-tumor killing of cells expressing low amounts of the target antigen. CD229, a signaling lymphocyte-activation molecule (SLAM) family member, has previously been identified as a target for CAR T cell-mediated treatment of multiple myeloma (MM) due to its high expression on the surfaces of MM cells. CD229 CAR T cells have shown effective clearance of MM cells in vitro and in vivo. However, healthy lymphocytes also express CD229, albeit at lower amounts than MM cells, causing their unintended targeting by CD229 CAR T cells. To increase the selectivity of CD229 CAR T cells for MM cells, we used a single amino acid substitution approach of the CAR binding domain to reduce CAR affinity. To identify CARs with increased selectivity, we screened variant binding domains using solid-phase binding assays and biolayer interferometry and determined the cytotoxic activity of variant CAR T cells against MM cells and healthy lymphocytes. We identified a CD229 CAR binding domain with micromolar affinity that, when combined with overexpression of c-Jun, confers antitumor activity comparable to parental CD229 CAR T cells but lacks the parental cells' cytotoxic activity toward healthy lymphocytes in vitro and in vivo. The results represent a promising strategy to improve the efficacy and safety of CAR T cell therapy that requires clinical validation.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/patologia , Aminoácidos/metabolismo , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Antineoplásicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
18.
Hum Vaccin Immunother ; 19(2): 2216116, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278257

RESUMO

Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication following kidney transplantation, and there is a critical and unmet need for PTLD treatments associated with more pronounced and durable responses. To date, reports on the use of CD19-targeted chimeric antigen receptor (CAR) T (CAR-T) cells in patients after solid organ transplant (SOT) have been anecdotal, clinical presentations and outcomes have been heterogenous, and a longitudinal analysis of CAR-T cell expansion and persistence in PTLD patients has not been reported. Our report describes a patient with a history of renal transplant who received CD19-directed CAR-T cell therapy for the treatment of refractory PTLD, diffuse large B cell lymphoma (DLBCL)-type. We show that even with the background of prolonged immunosuppression for SOT, it is possible to generate autologous CAR-T products capable of expansion and persistence in vivo, without evidence of excess T-cell exhaustion. Our data indicate that CAR-T cells generated from a SOT recipient with PTLD can yield deep remissions without increased toxicity or renal allograft dysfunction. Future clinical studies should build on these findings to investigate CAR-T therapy, including longitudinal monitoring of CAR-T phenotype and function, for PTLD in SOT recipients.


Assuntos
Transplante de Rim , Transtornos Linfoproliferativos , Transplante de Órgãos , Receptores de Antígenos Quiméricos , Humanos , Transplante de Rim/efeitos adversos , Receptores de Antígenos Quiméricos/uso terapêutico , Transplante de Órgãos/efeitos adversos , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/terapia , Linfócitos T/patologia
19.
Clin Dev Immunol ; 2012: 134081, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22481961

RESUMO

BACKGROUND: Multiple myeloma (MM) and its therapies may induce a severely compromised humoral immunity. We have performed a longitudinal analysis of IgG-antibody responses against influenza virus (FLU) and tetanus toxoid (TT) as surrogate markers for the B cell-mediated immunity in MM patients. METHODS: 1094 serum samples of 190 MM patients and samples from 100 healthy donors were analyzed by ELISA for FLU- and TT-specific antibodies. RESULTS: MM patients evidenced lower levels of FLU- and TT-specific antibodies than healthy controls (P < 0.001). Immunoreactivity decreased with progressing disease and worsening clinical status. Levels of FLU- and TT-specific antibodies increased shortly (0-6 months) after alloSCT (P < 0.001), a time-period during which intravenous immunoglobulin (IVIG) is routinely applied. Thereafter, antibody concentrations declined and remained suppressed for 3 years in the case of FLU-specific and for more than 5 years in the case of TT-specific antibodies. CONCLUSIONS: We found that MM is associated with a profound disease- and therapy-related immunosuppression, which is compensated for a few months after alloSCT, most likely by application of IVIG. This and the differences regarding the recovery of anti-FLU and anti-TT antibody titers during the following years need to be taken into account for optimizing IVIG application and immunization after alloSCT.


Assuntos
Alphainfluenzavirus/imunologia , Anticorpos Antibacterianos/biossíntese , Anticorpos Antivirais/biossíntese , Linfócitos B/imunologia , Imunoglobulina G/sangue , Mieloma Múltiplo/imunologia , Toxoide Tetânico/imunologia , Idoso , Anticorpos Antibacterianos/imunologia , Anticorpos Antivirais/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Terapia de Imunossupressão , Injeções Intravenosas , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/terapia , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/imunologia , Transplante de Células-Tronco , Transplante Homólogo , Proteínas do Core Viral/imunologia
20.
Trends Biotechnol ; 40(7): 875-890, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35078657

RESUMO

Chimeric antigen receptor (CAR) T cells have revolutionized cancer treatment. CARs use antibody-derived binding domains to redirect T cells to antigens expressed on the surface of cancer cells. However, the high affinity of most currently used CAR-binding domains results in excessive T-cell activation limiting CAR T-cell persistence and the inability to differentiate between antigen-high tumor cells and antigen-low healthy cells. We review recent data on the use of low-affinity CAR-binding domains and evaluate technologies and approaches to engineer and screen low-affinity antibody variants for CAR T-cell development. We propose an ideal workflow for the generation of optimal low-affinity binders derived from existing antibodies to streamline the development of more functional and selective therapeutics.


Assuntos
Receptores de Antígenos Quiméricos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA