Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 233(5): 2000-2016, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729790

RESUMO

Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes. Light also modulates the levels of several hormones including brassinosteriods, cytokinins, auxins and gibberellins, which themselves control chloroplast development particularly during early stages of plant development. Transcription factors such as GOLDENLIKE1&2 (GLK1&2), GATA NITRATE-INDUCIBLE CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) act downstream of both light and phytohormone signalling to regulate chloroplast development. Thus, in green tissues transcription factors, light signalling and hormone signalling form a complex network regulating the transcription of chloroplast- and photosynthesis-related genes to control the development and number of chloroplasts per cell. We use this conceptual framework to identify points of regulation that could be harnessed to modulate chloroplast abundance and increase photosynthetic efficiency of crops, and to highlight future avenues to overcome gaps in current knowledge.


Assuntos
Proteínas de Arabidopsis , Viridiplantae , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Luz , Fotossíntese/genética , Folhas de Planta/fisiologia , Viridiplantae/metabolismo
2.
Nat Commun ; 13(1): 6421, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307431

RESUMO

Many plants associate with arbuscular mycorrhizal fungi for nutrient acquisition, while legumes also associate with nitrogen-fixing rhizobial bacteria. Both associations rely on symbiosis signaling and here we show that cereals can perceive lipochitooligosaccharides (LCOs) for activation of symbiosis signaling, surprisingly including Nod factors produced by nitrogen-fixing bacteria. However, legumes show stringent perception of specifically decorated LCOs, that is absent in cereals. LCO perception in plants is activated by nutrient starvation, through transcriptional regulation of Nodulation Signaling Pathway (NSP)1 and NSP2. These transcription factors induce expression of an LCO receptor and act through the control of strigolactone biosynthesis and the karrikin-like receptor DWARF14-LIKE. We conclude that LCO production and perception is coordinately regulated by nutrient starvation to promote engagement with mycorrhizal fungi. Our work has implications for the use of both mycorrhizal and rhizobial associations for sustainable productivity in cereals.


Assuntos
Medicago truncatula , Micorrizas , Rhizobium , Medicago truncatula/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiologia , Simbiose , Rhizobium/metabolismo , Nutrientes
3.
Plant Direct ; 4(2): e00188, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32072132

RESUMO

Fluorescent reporters have facilitated non-invasive imaging in multiple plant species and thus allowed the analysis of processes ranging from gene expression and protein localization to cellular patterning. However, in rice, a globally important crop and model species, there are relatively few reports of fluorescent proteins being used in leaves. Fluorescence imaging is particularly difficult in the rice leaf blade, likely due to a high degree of light scattering in this tissue. To address this, we investigated approaches to improve deep imaging in mature rice leaf blades. We found that ClearSee treatment, which has previously been used to visualize fluorescent reporters in whole tissues of plants, led to improved imaging in rice. Removing epidermal and subtending mesophyll cell layers was faster than ClearSee and also reduced light scattering such that imaging of fluorescent proteins in deeper leaf layers was possible. To expand the range of fluorescent proteins suitable for imaging in rice, we screened twelve whose spectral profiles spanned most of the visible spectrum. This identified five proteins (mTurquoise2, mNeonGreen, mClover3, mKOκ, and tdTomato) that are robustly expressed and detectable in mesophyll cells of stably transformed plants. Using microparticle bombardment, we show that mTurquoise2 and mNeonGreen can be used for simultaneous multicolor imaging of different subcellular compartments. Overall, we conclude that mTurquoise2, mNeonGreen, mClover3, mKOκ, and tdTomato are suitable for high-resolution live imaging of rice leaves, both after transient and stable transformation. Along with the rapid microparticle bombardment method, which allows transient transformation of major cell types in the leaf blade, these fluorescent reporters should greatly facilitate the analysis of gene expression and cell biology in rice.

4.
Curr Biol ; 27(17): R952-R963, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898668

RESUMO

Arbuscular mycorrhizal fungi form associations with most land plants and facilitate nutrient uptake from the soil, with the plant receiving mineral nutrients from the fungus and in return providing the fungus with fixed carbon. This nutrient exchange takes place through highly branched fungal structures called arbuscules that are formed in cortical cells of the host root. Recent discoveries have highlighted the importance of fatty acids, in addition to sugars, acting as the form of fixed carbon transferred from the plant to the fungus and several studies have begun to elucidate the mechanisms that control the plant processes necessary for fungal colonisation and arbuscule development. In this review, we analyse the mechanisms that allow arbuscule development and the processes necessary for nutrient exchange between the plant and the fungus.


Assuntos
Carbono/metabolismo , Fungos/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Transporte Biológico , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Simbiose
5.
Science ; 356(6343): 1175-1178, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28596311

RESUMO

Plants form beneficial associations with arbuscular mycorrhizal fungi, which facilitate nutrient acquisition from the soil. In return, the fungi receive organic carbon from the plants. The transcription factor RAM1 (REQUIRED FOR ARBUSCULAR MYCORRHIZATION 1) is crucial for this symbiosis, and we demonstrate that it is required and sufficient for the induction of a lipid biosynthetic pathway that is expressed in plant cells accommodating fungal arbuscules. Lipids are transferred from the plant to mycorrhizal fungi, which are fatty acid auxotrophs, and this lipid export requires the glycerol-3-phosphate acyltransferase RAM2, a direct target of RAM1. Our work shows that in addition to sugars, lipids are a major source of organic carbon delivered to the fungus, and this is necessary for the production of fungal lipids.


Assuntos
Ácidos Graxos/metabolismo , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Ácidos Graxos/biossíntese , Regulação Fúngica da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Parasita/fisiologia , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA