Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccine ; 39(15): 2048-2059, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33744044

RESUMO

Despite solid evidence of the success of rotavirus vaccines in saving children from fatal gastroenteritis, more than 82 million infants worldwide still lack access to a rotavirus vaccine. The main barriers to global rotavirus vaccine coverage include cost, manufacturing capacity and suboptimal efficacy in low- and lower-middle income countries. One vaccine candidate with the potential to address the latter is based on the novel, naturally attenuated RV3 strain of rotavirus, RV3-BB vaccine administered in a birth dose strategy had a vaccine efficacy against severe rotavirus gastroenteritis of 94% at 12 months of age in infants in Indonesia. To further develop this vaccine candidate, a well-documented and low-cost manufacturing process is required. A target fully loaded cost of goods (COGs) of ≤$3.50 per course of three doses was set based on predicted market requirements. COGs modelling was leveraged to develop a process using Vero cells in cell factories reaching high titers, reducing or replacing expensive reagents and shortening process time to maximise output. Stable candidate liquid formulations were developed allowing two-year storage at 2-8 °C. In addition, the formulation potentially renders needless the pretreatment of vaccinees with antacid to ensure adequate gastric acid neutralization for routine oral vaccination. As a result, the formulation allows small volume dosing and reduction of supply chain costs. A dose ranging study is currently underway in Malawi that will inform the final clinical dose required. At a clinical dose of ≤6.3 log10 FFU, the COGs target of ≤$3.50 per three dose course was met. At a clinical dose of 6.5 log10 FFU, the final manufacturing process resulted in a COGs that is substantially lower than the current average market price, 2.44 USD per dose. The manufacturing and formulation processes were transferred to BioFarma in Indonesia to enable future RV3-BB vaccine production.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Animais , Criança , Chlorocebus aethiops , Análise Custo-Benefício , Humanos , Indonésia , Lactente , Malaui , Infecções por Rotavirus/prevenção & controle , Vacinação , Vacinas Atenuadas , Células Vero
2.
Vaccine ; 31(5): 850-6, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23123018

RESUMO

There are two highly efficacious poliovirus vaccines: Sabin's live-attenuated oral polio vaccine (OPV) and Salk's inactivated polio vaccine (IPV). OPV can be made at low costs per dose and is easily administrated. However, the major drawback is the frequent reversion of the OPV vaccine strains to virulent poliovirus strains which can result in Vaccine Associated Paralytic Poliomyelitis (VAPP) in vaccinees. Furthermore, some OPV revertants with high transmissibility can circulate in the population as circulating Vaccine Derived Polioviruses (cVDPVs). IPV does not convey VAPP and cVDPVs but the high costs per dose and insufficient supply have rendered IPV an unfavorable option for low and middle-income countries. Here, we explored whether the human PER.C6(®) cell-line, which has the unique capability to grow at high density in suspension, under serum-free conditions, could be used as a platform for high yield production of poliovirus. PER.C6(®) cells supported replication of all three poliovirus serotypes with virus titers ranging from 9.4 log(10) to 11.1 log(10)TCID(50)/ml irrespective of the volume scale (10 ml in shaker flasks to 2 L in bioreactors). This production yield was 10-30 fold higher than in Vero cell cultures performed here, and even 100-fold higher than what has been reported for Vero cell cultures in literature [38]. In agreement, the D-antigen content per volume PER.C6(®)-derived poliovirus was on average 30-fold higher than Vero-derived poliovirus. Interestingly, PER.C6(®) cells produced on average 2.5-fold more D-antigen units per cell than Vero cells. Based on our findings, we are exploring PER.C6(®) as an interesting platform for large-scale production of poliovirus at low costs, potentially providing the basis for global supply of an affordable IPV.


Assuntos
Linhagem Celular , Vacina Antipólio de Vírus Inativado/isolamento & purificação , Poliovirus/crescimento & desenvolvimento , Tecnologia Farmacêutica/métodos , Animais , Meios de Cultura Livres de Soro , Humanos , Vacina Antipólio de Vírus Inativado/economia , Tecnologia Farmacêutica/economia , Carga Viral , Cultura de Vírus/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA