Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 591(7850): 431-437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33505021

RESUMO

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Biocatálise , Neurônios Dopaminérgicos/metabolismo , Feminino , Mutação com Ganho de Função , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Knockout , Destreza Motora , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Doença de Parkinson/genética , Canais de Potássio/química , Canais de Potássio/deficiência , Canais de Potássio/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
2.
Nat Chem Biol ; 20(5): 646-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347213

RESUMO

Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Amiloide/metabolismo , Humanos , Animais , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Processamento de Proteína Pós-Traducional , Microscopia Crioeletrônica , Neurônios/metabolismo , Neurônios/patologia
3.
Neurobiol Dis ; 191: 106411, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228253

RESUMO

Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets. Here we characterized the neuroinflammatory gene expression profile of reactive microglia and astrocytes in the SNpc during early synucleinopathy in the rat α-syn pre-formed fibril (PFF) model. Rats received intrastriatal injection of α-syn PFFs and expression of immune genes was quantified with droplet digital PCR (ddPCR), after which fluorescent in situ hybridization (FISH) was used to localize gene expression to microglia or astrocytes in the SNpc. Genes previously associated with reactive microglia (Cd74, C1qa, Stat1, Axl, Casp1, Il18, Lyz2) and reactive astrocytes (C3, Gbp2, Serping1) were significantly upregulated in the SN of PFF injected rats. Localization of gene expression to SNpc microglia near α-syn aggregates identified a unique α-syn aggregate microglial gene expression profile characterized by upregulation of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 and Fcer1g. Importantly, significant microglial upregulation of Cd74 and C3 were only observed following injection of α-syn PFFs, not α-syn monomer, confirming specificity to α-syn aggregation. Serping1 expression also localized to astrocytes in the SNpc. Interestingly, C3 expression in the SNpc localized to microglia at 2- and 4-months post-PFF, but to astrocytes at 6-months post-PFF. We also observed expression of Rt1-a2 and Cxcl10 in SNpc dopamine neurons. Cumulatively our results identify a dynamic, yet reproducible gene expression profile of reactive microglia and astrocytes associated with early synucleinopathy in the rat SNpc.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hibridização in Situ Fluorescente , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Sinucleinopatias/patologia , Transcriptoma
4.
Eur J Neurosci ; 59(1): 132-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072889

RESUMO

The existent pre-clinical models of Parkinson's disease do not simultaneously recapitulate severe degeneration of dopamine neurons and the occurrence of alpha-synuclein (aSyn) aggregation in one study system. In this study, we injected aSyn pre-formed fibrils (PFF) and 6-hydroxydopamine (6-OHDA) unilaterally into the striatum of C57BL/6 wild-type male mice at an interval of 2 weeks to induce aggregation of aSyn protein and trigger the loss of dopamine neurons simultaneously in one model and studied the behavioural effects of the combination in these mice. 6-OHDA was tested at three different doses, and 2 µg of 6-OHDA combined with PFF-induced aSyn aggregation was found to produce the most optimal disease phenotype. At 14 weeks timepoint, mice injected with a combination of PFF and 6-OHDA sustained significant damage to the nigrostriatal pathway and exhibited aSyn-positive aggregation. Our data suggest that the neurons that formed large aSyn aggregates were particularly vulnerable to 6-OHDA-induced degeneration. We also demonstrate the manifestation of a relatively aggressive pathology in 2- to 4-month-old mice, as compared to younger 7- to 9-week-old ones. Furthermore, cerebral dopamine neurotrophic factor (CDNF) administered intrastriatally rescued dopamine neurons and motor behaviour of the animals to some extent from 6-OHDA toxicity. However, no such effect could be seen in the novel 6-OHDA + PFFs combination model. For the first time, we demonstrate the combined effect of PFF and 6-OHDA simultaneously in one model. We further discuss the scope for further optimizing this combination model to develop it as a promising pre-clinical platform for drug screening and development.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Oxidopamina , Doença de Parkinson/metabolismo
5.
Eur J Neurosci ; 59(7): 1585-1603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356120

RESUMO

Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% âž” 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Masculino , Animais , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Levodopa/farmacologia , Microdiálise , Substância Negra/metabolismo , Doença de Parkinson/metabolismo
6.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664840

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Assuntos
Microglia , Ratos Endogâmicos F344 , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , alfa-Sinucleína , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Ratos , Masculino , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Pirróis/farmacologia , Aminopiridinas/farmacologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/efeitos dos fármacos , Modelos Animais de Doenças
7.
Acta Neuropathol ; 148(1): 18, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141121

RESUMO

Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-ß-sheet aggregates. Indeed, ß-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.


Assuntos
Doença por Corpos de Lewy , alfa-Sinucleína , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Encéfalo/metabolismo , Corpos de Lewy/patologia , Corpos de Lewy/metabolismo
8.
Acta Neuropathol ; 147(1): 55, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472475

RESUMO

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Encéfalo/patologia , Proteínas tau/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Neurônios/patologia , Camundongos Transgênicos , Mamíferos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
9.
Nature ; 557(7706): 558-563, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743672

RESUMO

In Lewy body diseases-including Parkinson's disease, without or with dementia, dementia with Lewy bodies, and Alzheimer's disease with Lewy body co-pathology 1 -α-synuclein (α-Syn) aggregates in neurons as Lewy bodies and Lewy neurites 2 . By contrast, in multiple system atrophy α-Syn accumulates mainly in oligodendrocytes as glial cytoplasmic inclusions (GCIs) 3 . Here we report that pathological α-Syn in GCIs and Lewy bodies (GCI-α-Syn and LB-α-Syn, respectively) is conformationally and biologically distinct. GCI-α-Syn forms structures that are more compact and it is about 1,000-fold more potent than LB-α-Syn in seeding α-Syn aggregation, consistent with the highly aggressive nature of multiple system atrophy. GCI-α-Syn and LB-α-Syn show no cell-type preference in seeding α-Syn pathology, which raises the question of why they demonstrate different cell-type distributions in Lewy body disease versus multiple system atrophy. We found that oligodendrocytes but not neurons transform misfolded α-Syn into a GCI-like strain, highlighting the fact that distinct α-Syn strains are generated by different intracellular milieus. Moreover, GCI-α-Syn maintains its high seeding activity when propagated in neurons. Thus, α-Syn strains are determined by both misfolded seeds and intracellular environments.


Assuntos
Citoplasma/metabolismo , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Neurônios/metabolismo , alfa-Sinucleína/classificação , alfa-Sinucleína/metabolismo , Animais , Citoplasma/química , Citoplasma/patologia , Feminino , Humanos , Corpos de Lewy/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/patologia , Oligodendroglia/química , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Especificidade de Órgãos , Dobramento de Proteína , alfa-Sinucleína/química
10.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732162

RESUMO

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.


Assuntos
Encéfalo , Modelos Animais de Doenças , Estresse Oxidativo , Tomografia por Emissão de Pósitrons , Sinucleinopatias , alfa-Sinucleína , Animais , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Tomografia por Emissão de Pósitrons/métodos , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Radioisótopos de Flúor , Masculino , Camundongos Transgênicos , Compostos Radiofarmacêuticos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA