Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
2.
Mol Cell ; 83(20): 3720-3739.e8, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37591242

RESUMO

Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Sobrevivência Celular/genética , Cromatina/genética , Ciclina E/genética , Ciclina E/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética
4.
Mol Cell ; 78(3): 459-476.e13, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32240602

RESUMO

The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.


Assuntos
Proteína Quinase CDC2/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase CDC2/genética , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 52(10): 6036-6048, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38709891

RESUMO

Nonsense-mediated mRNA decay (NMD) is a conserved co-translational mRNA surveillance and turnover pathway across eukaryotes. NMD has a central role in degrading defective mRNAs and also regulates the stability of a significant portion of the transcriptome. The pathway is organized around UPF1, an RNA helicase that can interact with several NMD-specific factors. In human cells, degradation of the targeted mRNAs begins with a cleavage event that requires the recruitment of the SMG6 endonuclease to UPF1. Previous studies have identified functional links between SMG6 and UPF1, but the underlying molecular mechanisms have remained elusive. Here, we used mass spectrometry, structural biology and biochemical approaches to identify and characterize a conserved short linear motif in SMG6 that interacts with the cysteine/histidine-rich (CH) domain of UPF1. Unexpectedly, we found that the UPF1-SMG6 interaction is precluded when the UPF1 CH domain is engaged with another NMD factor, UPF2. Based on cryo-EM data, we propose that the formation of distinct SMG6-containing and UPF2-containing NMD complexes may be dictated by different conformational states connected to the RNA-binding status of UPF1. Our findings rationalize a key event in metazoan NMD and advance our understanding of mechanisms regulating activity and guiding substrate recognition by the SMG6 endonuclease.


Assuntos
Endonucleases , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , Proteínas de Ligação a RNA , Transativadores , Humanos , Microscopia Crioeletrônica , Endonucleases/metabolismo , Endonucleases/genética , Endorribonucleases , Modelos Moleculares , Ligação Proteica , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Transativadores/metabolismo , Transativadores/genética , Transativadores/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Motivos de Ligação ao RNA
6.
Proc Natl Acad Sci U S A ; 120(14): e2220413120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972439

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in various cancer types. HER2-targeting trastuzumab plus chemotherapy is used as first-line therapy for HER2-positive recurrent or primary metastatic gastric cancer, but intrinsic and acquired trastuzumab resistance inevitably develop over time. To overcome gastric cancer resistance to HER2-targeted therapies, we have conjugated trastuzumab with a beta-emitting therapeutic isotope, lutetium-177, to deliver radiation locally to gastric tumors with minimal toxicity. Because trastuzumab-based targeted radioligand therapy (RLT) requires only the extramembrane domain binding of membrane-bound HER2 receptors, HER2-targeting RLT can bypass any resistance mechanisms that occur downstream of HER2 binding. Leveraging our previous discoveries that statins, a class of cholesterol-lowering drugs, can enhance the cell surface-bound HER2 to achieve effective drug delivery in tumors, we proposed that the combination of statins and [177Lu]Lu-trastuzumab-based RLT can enhance the therapeutic efficacy of HER2-targeted RLT in drug-resistant gastric cancers. We demonstrate that lovastatin elevates cell surface HER2 levels and increases the tumor-absorbed radiation dose of [177Lu]Lu-DOTA-trastuzumab. Furthermore, lovastatin-modulated [177Lu]Lu-DOTA-trastuzumab RLT durably inhibits tumor growth and prolongs overall survival in mice bearing NCI-N87 gastric tumors and HER2-positive patient-derived xenografts (PDXs) of known clinical resistance to trastuzumab therapy. Statins also exhibit a radioprotective effect, reducing radiotoxicity in a mice cohort given the combination of statins and [177Lu]Lu-DOTA-trastuzumab. Since statins are commonly prescribed to patients, our results strongly support the feasibility of clinical studies that combine lovastatin with HER2-targeted RLT in HER2-postive patients and trastuzumab-resistant HER2-positive patients.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Preparações Farmacêuticas , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Linhagem Celular Tumoral
7.
Proc Natl Acad Sci U S A ; 119(27): e2203820119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759660

RESUMO

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer with limited meaningful treatment options. NEPC lesions uniquely express delta-like ligand 3 (DLL3) on their cell surface. Taking advantage of DLL3 overexpression, we developed and evaluated lutetium-177 (177Lu)-labeled DLL3-targeting antibody SC16 (177Lu-DTPA-SC16) as a treatment for NEPC. SC16 was functionalized with DTPA-CHX-A" chelator and radiolabeled with 177Lu to produce 177Lu-DTPA-SC16. Specificity and selectivity of 177Lu-DTPA-SC16 were evaluated in vitro and in vivo using NCI-H660 (NEPC, DLL3-positive) and DU145 (adenocarcinoma, DLL3-negative) cells and xenografts. Dose-dependent treatment efficacy and specificity of 177Lu-DTPA-SC16 radionuclide therapy were evaluated in H660 and DU145 xenograft-bearing mice. Safety of the agent was assessed by monitoring hematologic parameters. 177Lu-DTPA-SC16 showed high tumor uptake and specificity in H660 xenografts, with minimal uptake in DU145 xenografts. At all three tested doses of 177Lu-DTPA-SC16 (4.63, 9.25, and 27.75 MBq/mouse), complete responses were observed in H660-bearing mice; 9.25 and 27.75 MBq/mouse doses were curative. Even the lowest tested dose proved curative in five (63%) of eight mice, and recurring tumors could be successfully re-treated at the same dose to achieve complete responses. In DU145 xenografts, 177Lu-DTPA-SC16 therapy did not inhibit tumor growth. Platelets and hematocrit transiently dropped, reaching nadir at 2 to 3 wk. This was out of range only in the highest-dose cohort and quickly recovered to normal range by week 4. Weight loss was observed only in the highest-dose cohort. Therefore, our data demonstrate that 177Lu-DTPA-SC16 is a potent and safe radioimmunotherapeutic agent for testing in humans with NEPC.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Neuroendócrino , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Neoplasias da Próstata , Radioimunoterapia , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Neuroendócrino/radioterapia , Quelantes/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ligantes , Lutécio , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Ácido Pentético/química , Neoplasias da Próstata/radioterapia , Radioisótopos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Genome Res ; 31(1): 146-158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272935

RESUMO

As the most complex organ of the human body, the brain is composed of diverse regions, each consisting of distinct cell types and their respective cellular interactions. Human brain development involves a finely tuned cascade of interactive events. These include spatiotemporal gene expression changes and dynamic alterations in cell-type composition. However, our understanding of this process is still largely incomplete owing to the difficulty of brain spatiotemporal transcriptome collection. In this study, we developed a tensor-based approach to impute gene expression on a transcriptome-wide level. After rigorous computational benchmarking, we applied our approach to infer missing data points in the widely used BrainSpan resource and completed the entire grid of spatiotemporal transcriptomics. Next, we conducted deconvolutional analyses to comprehensively characterize major cell-type dynamics across the entire BrainSpan resource to estimate the cellular temporal changes and distinct neocortical areas across development. Moreover, integration of these results with GWAS summary statistics for 13 brain-associated traits revealed multiple novel trait-cell-type associations and trait-spatiotemporal relationships. In summary, our imputed BrainSpan transcriptomic data provide a valuable resource for the research community and our findings help further studies of the transcriptional and cellular dynamics of the human brain and related diseases.


Assuntos
Encefalopatias , Encéfalo , Perfilação da Expressão Gênica , Humanos , Fenótipo , Transcriptoma
9.
Blood ; 140(10): 1167-1181, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853161

RESUMO

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Animais , Apoptose , Humanos , Leucemia Mieloide Aguda/genética , Complexo Principal de Histocompatibilidade , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transplante Homólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
10.
NMR Biomed ; 37(3): e5064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062865

RESUMO

Static quantitative magnetic resonance imaging (MRI) provides readouts of structural changes in diseased muscle, but current approaches lack the ability to fully explain the loss of contractile function. Muscle contractile function can be assessed using various techniques including phase-contrast MRI (PC-MRI), where strain rates are quantified. However, current two-dimensional implementations are limited in capturing the complex motion of contracting muscle in the context of its three-dimensional (3D) fiber architecture. The MR acquisitions (chemical shift-encoded water-fat separation scan, spin echo-echoplanar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) wereperformed at 3 T. PC-MRI acquisitions and performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Acquisitions (3 T, chemical shift-encoded water-fat separation scan, spin echo-echo planar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) were performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Strain rates and diffusion tensors were calculated and combined to obtain strain rates along and perpendicular to the muscle fibers in seven lower leg muscles during the dynamic dorsi-/plantarflexion movement cycle. To evaluate strain rates along the proximodistal muscle axis, muscles were divided into five equal segments. t-tests were used to test if cyclic strain rate patterns (amplitude > 0) were present along and perpendicular to the muscle fibers. The effects of proximal-distal location and load were evaluated using repeated measures ANOVAs. Cyclic temporal strain rate patterns along and perpendicular to the fiber were found in all muscles involved in dorsi-/plantarflexion movement (p < 0.0017). Strain rates along and perpendicular to the fiber were heterogeneously distributed over the length of most muscles (p < 0.003). Additional loading reduced strain rates of the extensor digitorum longus and gastrocnemius lateralis muscle (p < 0.001). In conclusion, the lower leg muscles involved in cyclic dorsi-/plantarflexion exercise showed cyclic fiber strain rate patterns with amplitudes that varied between muscles and between the proximodistal segments within the majority of muscles.


Assuntos
Tornozelo , Perna (Membro) , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Imageamento por Ressonância Magnética/métodos , Fibras Musculares Esqueléticas , Água
11.
Chemistry ; 30(39): e202400541, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38739757

RESUMO

The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.

12.
J Magn Reson Imaging ; 59(2): 688-698, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37194646

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE: To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE: Prospective. POPULATION: A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE: 3-T, GRE Ristretto MRE. ASSESSMENT: First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS: Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS: Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION: CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Estudos Prospectivos , Técnicas de Imagem por Elasticidade/métodos , Reprodutibilidade dos Testes , Suspensão da Respiração , Pâncreas/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
13.
J Magn Reson Imaging ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166882

RESUMO

Whole-heart 4D-flow MRI is a valuable tool for advanced visualization and quantification of blood flow in cardiovascular imaging. Despite advantages over 2D-phase-contrast flow, clinical implementation remains only partially exploited due to many hurdles in all steps, from image acquisition, reconstruction, postprocessing and analysis, clinical embedment, reporting, legislation, and regulation to data storage. The intent of this manuscript was 1) to evaluate the extent of clinical implementation of whole-heart 4D-flow MRI, 2) to identify hurdles hampering clinical implementation, and 3) to reach consensus on requirements for clinical implementation of whole-heart 4D-flow MRI. This study is based on Delphi analysis. This study involves a panel of 18 experts in the field on whole-heart 4D-flow MRI. The experience with and opinions of experts (mean 13 years of experience, interquartile range 6) in the field were aggregated. This study showed that among experts in the cardiovascular field, whole-heart 4D-flow MRI is currently used for both clinical and research purposes. Overall, the panelists agreed that major hurdles currently hamper implementation and utilization. The sequence-specific hurdles identified were long scan time and lack of standardization. Further hurdles included cumbersome and time-consuming segmentation and postprocessing. The study concludes that implementation of whole-heart 4D-flow MRI in clinical routine is feasible, but the implementation process is complex and requires a dedicated, multidisciplinary team. A predefined plan, including risk assessment and technique validation, is essential. The reported consensus statements may guide further tool development and facilitate broader implementation and clinical use. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 5.

14.
Chemphyschem ; : e202400761, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219146

RESUMO

The quantification of Lewis acidity is of fundamental and applied importance in chemistry. While the computed fluoride ion affinity (FIA) is the most widely accepted thermodynamic metric, only sparse experimental values exist. Accordingly, a benchmark of methods for computing Lewis pair formation enthalpies, also with a broader set of Lewis bases against experimental data, is missing. Herein, we evaluate different density functionals against a set of 112 experimentally determined Lewis acid/base binding enthalpies and gauge influences such as solvation correction in structure optimization. From that, we can recommend r2SCAN-3c for robust quantification of this omnipresent interaction.

15.
Mol Pharm ; 21(3): 1402-1413, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38331430

RESUMO

Despite decades of work, small-cell lung cancer (SCLC) remains a frustratingly recalcitrant disease. Both diagnosis and treatment are challenges: low-dose computed tomography (the approved method used for lung cancer screening) is unable to reliably detect early SCLC, and the malignancy's 5 year survival rate stands at a paltry 7%. Clearly, the development of novel diagnostic and therapeutic tools for SCLC is an urgent, unmet need. CD133 is a transmembrane protein that is expressed at low levels in normal tissue but is overexpressed by a variety of tumors, including SCLC. We previously explored CD133 as a biomarker for a novel autoantibody-to-immunopositron emission tomography (PET) strategy for the diagnosis of SCLC, work that first suggested the promise of the antigen as a radiotheranostic target in the disease. Herein, we report the in vivo validation of a pair of CD133-targeted radioimmunoconjugates for the PET imaging and radioimmunotherapy of SCLC. To this end, [89Zr]Zr-DFO-αCD133 was first interrogated in a trio of advanced murine models of SCLC─i.e., orthotopic, metastatic, and patient-derived xenografts─with the PET probe consistently producing high activity concentrations (>%ID/g) in tumor lesions combined with low uptake in healthy tissues. Subsequently, a variant of αCD133 labeled with the ß-emitting radiometal 177Lu─[177Lu]Lu-DTPA-A″-CHX-αCD133─was synthesized and evaluated in a longitudinal therapy study in a subcutaneous xenograft model of SCLC, ultimately revealing that treatment with a dose of 9.6 MBq of the radioimmunoconjugate produced a significant increase in median survival compared to a control cohort. Taken together, these data establish CD133 as a viable target for the nuclear imaging and radiopharmaceutical therapy of SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Detecção Precoce de Câncer , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/radioterapia , Tomografia por Emissão de Pósitrons/métodos
16.
J Surg Oncol ; 129(2): 424-435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37754672

RESUMO

The use of three-dimensional printed implants in the field of orthopedic surgery has become increasingly popular and has potentiated hip reconstruction in the setting of oncologic resections of the pelvis and acetabulum. In this review, we examine and discuss the indications and technical considerations for custom implant reconstruction of pelvic defects.


Assuntos
Procedimentos Ortopédicos , Próteses e Implantes , Humanos , Pelve/cirurgia , Acetábulo/cirurgia , Impressão Tridimensional
17.
Crit Care ; 28(1): 269, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217380

RESUMO

This review explores the complex interactions between sedation and invasive ventilation and examines the potential of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, many critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm function. Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves respiratory drive, potentially helping to maintain diaphragm function during prolonged periods of invasive ventilation. In turn, higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal volumes, potentially reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, inhaled sedation may allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-protective ranges. Particularly in patients who are expected to require prolonged invasive ventilation, in whom the restoration of adequate but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents an attractive option for lung- and diaphragm-protective sedation. A technical limitation is ventilatory dead space introduced by volatile anesthetic reflectors, although this impact is minimal and comparable to ventilation with heat and moisture exchangers. Further studies are imperative for a comprehensive understanding of the specific effects of inhaled sedation on respiratory drive and effort and, ultimately, how this translates into patient-centered outcomes in critically ill patients.


Assuntos
Anestésicos Inalatórios , Diafragma , Respiração Artificial , Humanos , Diafragma/efeitos dos fármacos , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Respiração Artificial/métodos , Pulmão/efeitos dos fármacos , Pulmão/fisiologia
18.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607431

RESUMO

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Assuntos
Hipocampo , Exposição à Radiação , Feminino , Camundongos , Masculino , Animais , Sinapses , Potenciação de Longa Duração , Plasticidade Neuronal
19.
Appl Opt ; 63(1): 112-121, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175007

RESUMO

Broadband coherent anti-Stokes Raman scattering (BCARS) is a powerful spectroscopy method combining high signal intensity with spectral sensitivity, enabling rapid imaging of heterogeneous samples in biomedical research and, more recently, in crystalline materials. However, BCARS encounters spectral distortion due to a setup-dependent non-resonant background (NRB). This study assesses BCARS reproducibility through a round robin experiment using two distinct BCARS setups and crystalline materials with varying structural complexity, including diamond, 6H-SiC, KDP, and KTP. The analysis compares setup-specific NRB correction procedures, detected and NRB-removed spectra, and mode assignment. We determine the influence of BCARS setup parameters like pump wavelength, pulse width, and detection geometry and provide a practical guide for optimizing BCARS setups for solid-state applications.

20.
Nano Lett ; 23(9): 3913-3920, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126430

RESUMO

Graphene nano-optics at terahertz (THz) frequencies (ν) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For ν < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA