RESUMO
BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
Assuntos
Aedes , Culex , Animais , Humanos , Masculino , Filogenia , Elementos de DNA Transponíveis/genética , Mosquitos Vetores/genética , Culex/genética , Aedes/genética , Cromossomos , Evolução MolecularRESUMO
Genome engineering has been tremendously affected by the appearance of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based approach. Initially discovered as an adaptive immune system for prokaryotes, the method has rapidly evolved over the last decade, overtaking multiple technical challenges and scientific tasks and becoming one of the most effective, reliable, and easy-to-use technologies for precise genomic manipulations. Despite its undoubtable advantages, CRISPR/Cas9 technology cannot ensure absolute accuracy and predictability of genomic editing results. One of the major concerns, especially for clinical applications, is mutations resulting from error-prone repairs of CRISPR/Cas9-induced double-strand DNA breaks. In some cases, such error-prone repairs can cause unpredicted and unplanned large genomic modifications within the CRISPR/Cas9 on-target site. Here we describe the largest, to the best of our knowledge, undesigned on-target deletion with a size of ~293 kb that occurred after the cytoplasmic injection of CRISPR/Cas9 system components into mouse zygotes and speculate about its origin. We suppose that deletion occurred as a result of the truncation of one of the ends of a double-strand break during the repair.
Assuntos
Sistemas CRISPR-Cas , Deleção de Genes , Técnicas de Introdução de Genes/efeitos adversos , Zigoto/metabolismo , Animais , Feminino , Técnicas de Introdução de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reparo de DNA por RecombinaçãoRESUMO
Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.
Assuntos
Cromatina , Fibroblastos , Mastócitos , Melanócitos , Proteínas Proto-Oncogênicas c-kit , Animais , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Camundongos , Mastócitos/metabolismo , Melanócitos/metabolismo , Fibroblastos/metabolismo , Cromatina/metabolismo , Cromatina/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Regiões Promotoras Genéticas/genética , Elementos Facilitadores Genéticos/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Epigênese Genética , Loci Gênicos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Edição de Genes , Expressão Ectópica do Gene , MasculinoRESUMO
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Assuntos
Anopheles , Animais , Anopheles/genética , Cromatina/genéticaRESUMO
The auxin-inducible degron (AID) system is a promising tool for dynamic protein degradation. In mammalian cells, this approach has become indispensable to study fundamental molecular functions, such as replication, chromatin dynamics, or transcription, which are otherwise difficult to dissect. We present evaluation of the two prominent AID systems based on OsTIR1 and AtAFB2 auxin receptor F-box proteins (AFBs). We analyzed degradation dynamics of cohesin/condensin complex subunits in mouse embryonic stem cells (Rad21, Smc2, Ncaph, and Ncaph2) and human haploid HAP1 line (RAD21, SMC2). Double antibiotic selection helped achieve high homozygous AID tagging of an endogenous gene for all genes using CRISPR/Cas9. We found that the main challenge for successful protein degradation is obtaining cell clones with high and stable AFB expression levels due to the mosaic expression of AFBs. AFB expression from a transgene tends to decline with passages in the absence of constant antibiotic selection, preventing epigenetic silencing of a transgene, even at the AAVS1 safe-harbor locus. Comparing two AFBs, we found that the OsTIR1 system showed weak dynamics of protein degradation. At the same time, the AtAFB2 approach was very efficient even in random integration of AFB-expressed transgenes. Other factors such as degradation dynamics and low basal depletion were also in favor of the AtAFB2 system.
RESUMO
BACKGROUND: Anopheles coluzzii and Anopheles arabiensis belong to the Anopheles gambiae complex and are among the major malaria vectors in sub-Saharan Africa. However, chromosome-level reference genome assemblies are still lacking for these medically important mosquito species. FINDINGS: In this study, we produced de novo chromosome-level genome assemblies for A. coluzzii and A. arabiensis using the long-read Oxford Nanopore sequencing technology and the Hi-C scaffolding approach. We obtained 273.4 and 256.8 Mb of the total assemblies for A. coluzzii and A. arabiensis, respectively. Each assembly consists of 3 chromosome-scale scaffolds (X, 2, 3), complete mitochondrion, and unordered contigs identified as autosomal pericentromeric DNA, X pericentromeric DNA, and Y sequences. Comparison of these assemblies with the existing assemblies for these species demonstrated that we obtained improved reference-quality genomes. The new assemblies allowed us to identify genomic coordinates for the breakpoint regions of fixed and polymorphic chromosomal inversions in A. coluzzii and A. arabiensis. CONCLUSION: The new chromosome-level assemblies will facilitate functional and population genomic studies in A. coluzzii and A. arabiensis. The presented assembly pipeline will accelerate progress toward creating high-quality genome references for other disease vectors.
Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Cromossomos/genética , Genômica , Malária/genética , Mosquitos Vetores/genéticaRESUMO
Chromosome level assemblies are accumulating in various taxonomic groups including mosquitoes. However, even in the few reference-quality mosquito assemblies, a significant portion of the heterochromatic regions including telomeres remain unresolved. Here we produce a de novo assembly of the New World malaria mosquito, Anopheles albimanus by integrating Oxford Nanopore sequencing, Illumina, Hi-C and optical mapping. This 172.6 Mbps female assembly, which we call AalbS3, is obtained by scaffolding polished large contigs (contig N50 = 13.7 Mbps) into three chromosomes. All chromosome arms end with telomeric repeats, which is the first in mosquito assemblies and represents a significant step toward the completion of a genome assembly. These telomeres consist of tandem repeats of a novel 30-32 bp Telomeric Repeat Unit (TRU) and are confirmed by analyzing the termini of long reads and through both chromosomal in situ hybridization and a Bal31 sensitivity assay. The AalbS3 assembly included previously uncharacterized centromeric and rDNA clusters and more than doubled the content of transposable elements and other repetitive sequences. This telomere-to-telomere assembly, although still containing gaps, represents a significant step toward resolving biologically important but previously hidden genomic components. The comparison of different scaffolding methods will also inform future efforts to obtain reference-quality genomes for other mosquito species.