Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 26(3): 789-794, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26791014

RESUMO

In the present study, 23 derivatives of 1,3,6-trisubstituted ß-carboline were synthesized and evaluated for cytotoxic potential against four human cancer cells, namely A-549, HeLa, Hep G2 and MCF-7 as well as anti-leishmanial activity against Leishmania donovani (MHOM/80/IN/Dd8) promastigotes. Among the studied compounds, compounds 13c and 13q showed potent cytotoxic activity better than the parent compound 10. For instance, compound 13c was found to be the most cytotoxic with IC50 of 4.72, 3.59, 3.65 and 4.17 µM against A-549, HeLa, Hep G2 and MCF-7 respectively, while for compound 13q, IC50 were 15.47, 5.30, 6.15 and 13.39 µM against the same cancer cells respectively. Further, these two compounds were found to be apoptotic in A-549 and MCF-7 cells when observed using Annexin V/propidium iodide staining under confocal microscope. All the compounds were also tested for anti-leishmanial potential. In which, compounds 13u and 13c were found to show moderate inhibition with IC50 of 23.5±9.0 and 68.0±0.0 µM respectively, while compound 10 was the most active with IC50 of 9.0±2.8 µM, suggesting the modification at C-6 detrimental for anti-leishmanial activity. Interestingly, amongst all, compound 13c was found to be the most active for cytotoxic and moderately active for anti-leishmanial activity which can be further developed as a lead for these disease areas.


Assuntos
Antiprotozoários/síntese química , Carbolinas/química , Desenho de Fármacos , Antiprotozoários/química , Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Carbolinas/síntese química , Carbolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Células MCF-7 , Microscopia Confocal , Relação Estrutura-Atividade
2.
EXCLI J ; 13: 897-921, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26417311

RESUMO

Obesity is a disorder of lipid metabolism and continues to be a global problem, ranking fifth for deaths worldwide. It also leads to diabetes, cardiovascular disorders, musculoskeletal disorders and some types of cancer. Obesity is regarded as the output of a long-term imbalance between energy intake and energy expenditure. Digestion and absorption of dietary lipids by pancreatic lipase, a major source of excess calorie intake, can be targeted for development of anti-obesity agents. Being the major factor of concern, food materials and edible plants are most widely studied for the anti-obesity activity, so that they can be incorporated in the routine diet. In this review, an attempt was made to present a current scenario of the bioactive compounds from plant and microbial origin that have been investigated for their pancreatic lipase inhibition. Compounds belonging to various classes of natural products such as alkaloids, carotenoids, glycosides, polyphenols, polysaccharides, saponins and terpenoids are well studied while lipophilic compounds from microbial sources are the most active against the pancreatic lipase. Few studies on the synthetic analogues, structurally similar to the triglycerides have been described in the review. Despite of tremendous research on the finding of potential pancreatic lipase inhibitor, very few compounds have entered the clinical studies and no new molecule after orlistat has been marketed. Along with HTS based screening, detailed structure-activity relationship studies on semi-synthetic and synthetic derivatives might also provide a direction for the development of potential lead(s) or pharmacophore for pancreatic lipase inhibition in order to treat and/or prevent obesity and related disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA