Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chemphyschem ; : e202400835, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39403857

RESUMO

We have used grazing incidence X-ray absorption near edge spectroscopy (XANES) to investigate the behavior of monolayer FeOx films on Pt(111) under near ambient pressure CO oxidation conditions with a total gas pressure of 1 bar. Spectra indicate reversible changes during oxidation and reduction by O2 and CO at 150ºC, attributed to a transformation between FeO bilayer and FeO2 trilayer phases. The trilayer phase is also reduced upon heating in CO+O2, consistent with a Mars-van-Krevelen type mechanism for CO oxidation. At higher temperatures, the monolayer film dewets the surface, resulting in a loss of the observed reducibility. A similar iron oxide film prepared on Au(111) shows little sign of reduction or oxidation under the same conditions. The results highlight the unique properties of monolayer FeO and the importance of the Pt support in this reaction. The study furthermore demonstrates the power of grazing-incidence XAFS for in situ studies of these model catalysts under realistic conditions.

2.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666238

RESUMO

We investigated the structural evolution of electrochemically fabricated Pd nanowiresin situby means of grazing-incidence transmission small- and wide-angle x-ray scattering (GTSAXS and GTWAXS), x-ray fluorescence (XRF) and two-dimensional surface optical reflectance (2D-SOR). This shows how electrodeposition and the hydrogen evolution reaction (HER) compete and interact during Pd electrodepositon. During the bottom-up growth of the nanowires, we show thatß-phase Pd hydride is formed. Suspending the electrodeposition then leads to a phase transition fromß-phase Pd hydride toα-phase Pd. Additionally, we find that grain coalescence later hinders the incorporation of hydrogen in the Pd unit cell. GTSAXS and 2D-SOR provide complementary information on the volume fraction of the pores occupied by Pd, while XRF was used to monitor the amount of Pd electrodeposited.

3.
J Am Chem Soc ; 144(33): 15363-15371, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960901

RESUMO

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2 fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.

4.
Angew Chem Int Ed Engl ; 61(25): e202204244, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384213

RESUMO

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure-the (4×4) surface oxide on Pt3 Sn(111)-based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.

5.
Phys Chem Chem Phys ; 22(40): 22956-22962, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026372

RESUMO

We investigate with in situ surface X-ray diffraction (SXRD) and X-ray reflectivity (XRR) experiments the cathodic stability of an ultrathin single-crystalline IrO2(110) film with a regular array of mesoscopic rooflike structures that is supported on a RuO2(110)/Ru(0001) template. It turns out that the planarity of the single-crystalline IrO2(110) film is lost in that IrO2(110) oxide domains delaminate at a cathodic potential of -0.18 V. Obviously, the electrolyte solution is able to reach the RuO2(110) layer presumably through the surface grain boundaries of the IrO2(110) layer. Subsequently, the single-crystalline RuO2(110) structure-directing template is reduced to amorphous hydrous RuO2, with the consequence that the IrO2(110) film loses partly its adhesion to the template. From in situ XRR experiments we find that the IrO2(110) film does not swell upon cathodic polarization down to -0.18 V, while from in situ SXRD experiments, the lattice constants of IrO2(110) are shown to be not affected. The rooflike mesostructure of the IrO2(110) flakes remains intact after cathodic polarization to -0.18 V, evidencing that the crystallinity of IrO2(110) is retained.

6.
J Chem Phys ; 152(11): 114705, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32199440

RESUMO

We have investigated the structure of an ultrathin iron oxide phase grown on Ag(100) using surface x-ray diffraction in combination with Hubbard-corrected density functional theory (DFT+U) calculations. The film exhibits a novel structure composed of one close-packed layer of octahedrally coordinated Fe2+ sandwiched between two close-packed layers of tetrahedrally coordinated Fe3+ and an overall stoichiometry of Fe3O4. As the structure is distinct from bulk iron oxide phases and the coupling with the silver substrate is weak, we propose that the phase should be classified as a metastable two-dimensional oxide. The chemical and physical properties are potentially interesting, thanks to the predicted charge ordering between atomic layers, and analogy with bulk ferrite spinels suggests the possibility of synthesis of a whole class of two-dimensional ternary oxides with varying electronic, optical, and chemical properties.

7.
Angew Chem Int Ed Engl ; 59(45): 20037-20043, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32701180

RESUMO

The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. Analysis of C and O core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.

8.
J Am Chem Soc ; 140(40): 12974-12979, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226048

RESUMO

CO2 reduction reactions, which provide one route to limit the emission of this greenhouse gas, are commonly performed over Cu-based catalysts. Here, we use ambient pressure X-ray photoelectron spectroscopy together with density functional theory to obtain an atomistic understanding of the dissociative adsorption of CO2 on Cu(100). We find that the process is dominated by the presence of steps, which promote both a lowering of the dissociation barrier and an efficient separation between adsorbed O and CO, reducing the probability for recombination. The identification of steps as sites for efficient CO2 dissociation provides an understanding that can be used in the design of future CO2 reduction catalysts.

9.
J Am Chem Soc ; 140(47): 16245-16252, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431270

RESUMO

Understanding nanoparticle catalysis requires novel approaches in which adjoining crystal orientations can be studied under the same reactive conditions. Here we use a curved palladium crystal and near-ambient pressure X-ray photoemission spectroscopy to characterize chemical species during the catalytic oxidation of CO in a whole set of surfaces vicinal to the (111) direction simultaneously. By stabilizing the reaction at fixed temperatures around the ignition point, we observe a strong variation of the catalytic activity across the curved surface. Such spatial modulation of the reaction stage is straightforwardly mapped through the photoemission signal from active oxygen species and poisoning CO, which are shown to coexist in a transient regime that depends on the vicinal angle. Line-shape analysis and direct comparison with ultrahigh vacuum experiments help identifying and quantifying all such surface species, allowing us to reveal the presence of surface oxides during reaction ignition and cooling-off.

10.
J Synchrotron Radiat ; 25(Pt 5): 1389-1394, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179177

RESUMO

High-energy surface X-ray diffraction (HESXRD) provides surface structural information with high temporal resolution, facilitating the understanding of the surface dynamics and structure of the active phase of catalytic surfaces. The surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface, and the catalytic activity of the sample itself may affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, planar laser-induced fluorescence (PLIF) and HESXRD have been combined during the oxidation of CO over a Pd(100) crystal. PLIF complements the structural studies with an instantaneous two-dimensional image of the CO2 gas phase in the vicinity of the active model catalyst. Here the combined HESXRD and PLIF operando measurements of CO oxidation over Pd(100) are presented, allowing for an improved assignment of the correlation between sample structure and the CO2 distribution above the sample surface with sub-second time resolution.

11.
Acc Chem Res ; 50(9): 2326-2333, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28880530

RESUMO

Motivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures. To this end, a significant amount of effort over the years has been used to develop methods to investigate catalysts at more realistic conditions under operating conditions. One result from this effort is a vivid and sometimes heated discussion concerning the active phase for the seemingly simple CO oxidation reaction over the Pt-group metals in the literature. In recent years, we have explored the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures and temperatures. In this contribution, results from catalytic CO oxidation over a Pd(100) single crystal surface using Near Ambient Pressure X-ray Photo emission Spectroscopy (NAPXPS), Planar Laser-Induced Fluorescence (PLIF), and High Energy Surface X-ray Diffraction (HESXRD) are presented, and the strengths and weaknesses of the experimental techniques are discussed. Armed with structural knowledge from ultrahigh vacuum experiments, the presence of adsorbed molecules and gas-phase induced surface structures can be identified and related to changes in the reactivity or to reaction induced gas-flow limitations. In particular, the application of PLIF to catalysis allows one to visualize how the catalyst itself changes the gas composition close to the model catalyst surface upon ignition, and relate this to the observed surface structures. The effect obscures a straightforward relation between the active phase and the activity, since in the case of CO oxidation, the gas-phase close to the model catalyst surface is shown to be significantly more oxidizing than far away from the catalyst. We show that surface structural knowledge from UHV experiments and the composition of the gas phase close to the catalyst surface are crucial to understand structure-function relationships at semirealistic conditions. In the particular case of Pd, we argue that the surface structure of the PdO(101) has a significant influence on the activity, due to the presence of Coordinatively Unsaturated Sites (CUS) Pd atoms, similar to undercoordinated Ru and Ir atoms found for RuO2(110) and IrO2(110), respectively.

12.
Phys Rev Lett ; 119(9): 096102, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949575

RESUMO

Using surface x-ray diffraction (SXRD), quantitative low-energy electron diffraction (LEED), and density-functional theory (DFT) calculations, we have determined the structure of the (4×1) reconstruction formed by sputtering and annealing of the SnO_{2}(110) surface. We find that the reconstruction consists of an ordered arrangement of Sn_{3}O_{3} clusters bound atop the bulk-terminated SnO_{2}(110) surface. The model was found by application of a DFT-based evolutionary algorithm with surface compositions based on SXRD, and shows excellent agreement with LEED and with previously published scanning tunneling microscopy measurements. The model proposed previously consisting of in-plane oxygen vacancies is thus shown to be incorrect, and our result suggests instead that Sn(II) species in interstitial positions are the more relevant features of reduced SnO_{2}(110) surfaces.

13.
Phys Chem Chem Phys ; 18(30): 20312-20, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26805438

RESUMO

In an attempt to bridge the material and pressure gaps - two major challenges for an atomic scale understanding of heterogeneous catalysis - we employed high-energy surface X-ray diffraction as a tool to study the Pd(553) surface in situ under changing reaction conditions during CO oxidation. The diffraction patterns recorded under CO rich reaction conditions are characteristic for the metallic state of the surface. In an environment with low excess of O2 over the reaction stoichiometry, the surface seems to accommodate oxygen atoms along the steps forming one or several subsequent adsorbate structures and rapidly transforms into a combination of (332), (111) and (331) facets likely providing the room for the formation of a surface oxide. For the case of large excess of O2, the diffraction data show the presence of a multilayer PdO with the [101] crystallographic direction parallel to the [111] and the [331] directions of the substrate. The reconstructions in O2 excess are to a large extent similar to those previously reported for pure O2 exposures by Westerström et al. [R. Westerström et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 76, 155410].

14.
Angew Chem Int Ed Engl ; 55(32): 9267-71, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27346455

RESUMO

Ultrathin metal oxides exhibit unique chemical properties and show promise for applications in heterogeneous catalysis. Monolayer FeO films supported on metal surfaces show large differences in reactivity depending on the metal substrate, potentially enabling tuning of the catalytic properties of these materials. Nitric oxide (NO) adsorption is facile on silver-supported FeO, whereas a similar film grown on platinum is inert to NO under similar conditions. Ab initio calculations link this substrate-dependent behavior to steric hindrance caused by substrate-induced rumpling of the FeO surface, which is stronger for the platinum-supported film. Calculations show that the size of the activation barrier to adsorption caused by the rumpling is dictated by the strength of the metal-oxide interaction, offering a straightforward method for tailoring the adsorption properties of ultrathin films.

16.
Chemphyschem ; 16(5): 923-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25712198

RESUMO

We demonstrate the reversible intercalation of CO between a hexagonal boron nitride (h-BN) monolayer and a Rh(111) substrate above a threshold CO pressure of 0.01 mbar at room temperature. The intercalation of CO results in the flattening of the originally corrugated h-BN nanomesh and an electronic decoupling of the BN layer from the Rh substrate. The intercalated CO molecules assume a coverage and adsorption site distribution comparable to that on the free Rh(111) surface at similar conditions. The pristine h-BN nanomesh is reinstated upon heating to above 625 K. These observations may open up opportunities for a reversible tuning of the electronic and structural properties of monolayer BN films.

17.
Phys Chem Chem Phys ; 17(8): 5795-804, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25626848

RESUMO

The correlation between surface structure, stoichiometry and atomic occupancy of the polar MgAl2O4(100) surface has been studied with an interplay of noncontact atomic force microscopy, X-ray photoelectron spectroscopy and surface X-ray diffraction under ultrahigh vacuum conditions. The Al/Mg ratio is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 1073-1273 K. The Al excess is explained by the observed surface structure, where the formation of nanometer-sized pits and elongated patches with Al terminated step edges contribute to stabilizing the structure by compensating surface polarity. Surface X-ray diffraction reveals a reduced occupancy in the top two surface layers for both Mg, Al, and O and, moreover, vacancies are preferably located in octahedral sites, indicating that Al and Mg ions interchange sites. The excess of Al and high concentration of octahedral vacancies, very interestingly, indicates that the top few surface layers of the MgAl2O4(100) adopts a surface structure similar to that of a spinel-like transition Al2O3 film. However, after annealing at a high temperature of 1473 K, the Al/Mg ratio restores to its initial value, the occupancy of all elements increases, and the surface transforms into a well-defined structure with large flat terraces and straight step edges, indicating a restoration of the surface stoichiometry. It is proposed that the tetrahedral vacancies at these high temperatures are filled by Mg from the bulk, due to the increased mobility at high annealing temperatures.

18.
ACS Appl Mater Interfaces ; 16(1): 444-453, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109219

RESUMO

Industrial catalysts are complex materials systems operating in harsh environments. The active parts of the catalysts are nanoparticles that expose different facets with different surface orientations at which the catalytic reactions occur. However, these facets are close to impossible to study in detail under industrially relevant operating conditions. Instead, simpler model systems, such as single crystals with a well-defined surface orientation, have been successfully used to study gas-surface interactions such as adsorption and desorption, surface oxidation, and oxidation/reduction reactions. To more closely mimic the many facets exhibited by nanoparticles and thereby close the so-called materials gap, there has also been a recent move toward using polycrystalline surfaces and curved crystals. However, these studies are limited either by the pressure or spatial resolution at realistic pressures or by the number of surfaces studied simultaneously. In this work, we demonstrate the use of reflectance microscopy to study a vast number of catalytically active surfaces simultaneously under realistic and identical reaction conditions. As a proof of concept, we have conducted an operando experiment to study CO oxidation over a Pd polycrystal, where the polycrystalline surface acts as a collection of many single-crystal surfaces. Finally, we visualized the resulting data by plotting the reflectivity as a function of surface orientation. We think the techniques and visualization methods introduced in this work will be key toward bridging the materials gap in catalysis.

19.
J Appl Crystallogr ; 56(Pt 1): 312-321, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36777142

RESUMO

This work introduces the high-energy surface X-ray diffraction analysis toolkit (HAT), an open-source cross-platform software package written in Python to allow the extraction and processing of high-energy surface X-ray diffraction (HESXRD) data sets. Thousands of large-area detector images are collected in a single HESXRD scan, corresponding to billions of pixels and hence reciprocal space positions. HAT is an optimized reciprocal space binner that implements a graphical user interface to allow the easy and interactive exploration of HESXRD data sets. Regions of reciprocal space can be selected with movable and resizable masks in multiple views and are projected onto different axes to allow the creation of reciprocal space maps and the extraction of crystal truncation rods. Current and future versions of HAT can be downloaded and used free of charge.

20.
Adv Mater ; 35(39): e2304621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437599

RESUMO

Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution. The OER mechanism involves the oxidation of Mo4+ sites in the oxide film to Mo6+ that can be dissolved, which results in passivity breakdown. This is fundamentally different from typical transpassive breakdown of Cr-containing alloys where Cr6+ is postulated to be dissolved at high anodic potentials, which is not observed here. At high current densities, OER also leads to acidification of the solution near the surface, further triggering metal dissolution. The OER plays an important role in the mechanism of passivity breakdown of Ni-Cr-Mo alloys due to their catalytic activity, and this effect needs to be considered when studying the corrosion of catalytically active alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA