Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(2): e2200568, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36125043

RESUMO

The development of novel polymer dielectrics with enhanced dielectric performance is a great challenge for application of film capacitors in modern electronics and electrical systems. Herein, an innovative approach of chemical vapor deposition polymerization technology is proposed to prepare the all-organic sandwich structured parylene/polyimide/parylene (Py/PI/Py) composite films by employing poly(chloro-para-xylylene) (parylene C) as the outer layers and polyimide (PI) as the inner layer. The Py/PI/Py composites exhibit superior thermal resistance and outstanding mechanical properties. Moreover, thanks to the interfacial effect which contributes to reinforcing the dielectric response and the thickness effect which facilitates improving the breakdown strength, the dielectric performance of Py/PI/Py composites has been enhanced significantly. Accordingly, dielectric constant of 4.52-5.09, dissipation factor of 0.21-1.01%, and breakdown strength of 307-460 MV m-1 are achieved. Besides, notable energy storage performance is also obtained in Py/PI/Py composite dielectrics. Consequently, this novel application of chemical vapor deposition polymerization method in preparing all-organic multilayered polymer composite films with sandwich structure shows promising potential in film capacitor applications in harsh conditions.


Assuntos
Polímeros , Xilenos , Eletricidade , Eletrônica , Gases
2.
RSC Adv ; 13(2): 1278-1287, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686916

RESUMO

Dielectrics of the polymer-matrix composite are considered to present combined advantages from both the polymer matrix and inorganic fillers. However, the breakdown strength, as well as energy density, is not effectively enhanced due to the poor compatibility between the organic and inorganic components. Herein, polymer composites derived from polystyrene (PS) and barium titanate (BTO) are proposed and beneficial interface modification by poly(styrene-co-maleic anhydride) (PS-co-mah) is conducted to improve compatibility between the inorganic filler and polymer matrix. The results show that the BTO@PS-co-mah/PS composites, in which the interfacial layer of PS-co-mah would undergo chemical reactions with the aminated BTO and blend PS matrix with excellent physical compatibility, exhibit enhanced breakdown strength and declined dielectric loss compared with both pure PS and BTO/PS without interfacial modulation. Particularly, the BTO@PS-co-mah/PS composite with 5 wt% filler content indicates optimized performance with an E b of 507 MV m-1 and tan δ of 0.085%. It is deduced that the deep energy traps introduced by the PS-co-mah layer would weaken the local electric field and suppress the space charge transporting so as to optimize the performance of composites. Consequently, the interfacial-modified BTO@PS-co-mah/PS would present great potential for applications, such as film capacitors.

3.
RSC Adv ; 13(2): 963-972, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686917

RESUMO

With the growing development of film capacitors in various applications, the requirements for polymer dielectrics have increased accordingly. In this work, a series of ester-cotaining polyimide (EPI) dielectrics were designed and fabricated. Futhermore, integrated exploration of experimentation and molecular simulation is proposed to achieve polymer dielectrics with advanced comprehensive performance, as well as to analyze the dielectric mechanism in-depth. The EPIs show superior thermal resistance and dielectric properties. A Weibull breakdown strength of 440-540 MV m-1, permittivity of 3.52-3.85, dissipation factor of 0.627-0.880% and theoretical energy density of 3.13-4.90 J cm-3 were obtained for the EPIs. The relationship between microscopic parameters and dielectric behavior was investigated in detail. According to the experimental and calculated results, there is close correlation between dipolar moment density (µ/V vdw) and dielectric permittivity (ε r). It is deduced that the integrated research of experiments and molecular simulation would be an effective strategy to reveal the dielectric mechanism as well as assist in the molecular design of polymer dielectrics.

4.
RSC Adv ; 12(34): 21904-21915, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043084

RESUMO

Free-standing and flexible carbon nanofiber membranes (CNMs) with a three-dimensional network structure were fabricated based on PMDA/ODA polyimide by combining electrospinning, imidization, and carbonization strategies. The influence of carbonization temperature on the physical-chemical characteristics of CNMs was investigated in detail. The electrochemical performances of CNMs as free-standing electrodes without any binder or conducting materials for lithium-ion batteries were also discussed. Furthermore, the surface state and internal carbon structure had an important effect on the nitrogen state, electrical conductivity, and wettability of CNMs, and then further affected the electrochemical performances. The CNMs/Li metal half-cells exhibited a satisfying charge-discharge cycle performance and excellent rate performance. They showed that the reversible specific capacity of CNMs carbonized at 700 °C could reach as high as 430 mA h g-1 at 50 mA g-1, and the value of the specific capacity remained at 206 mA h g-1 after 500 cycles at a high current density of 1 A g-1. Overall, the newly developed carbon nanofiber membranes will be a promising candidate for flexible electrodes used in high-power lithium-ion batteries, supercapacitors and sodium-ion batteries.

5.
Polymers (Basel) ; 14(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080603

RESUMO

In order to solve the problem of low electrical conductivity of carbon nanofiber membranes, a novel triple crosslinking strategy, including pre-rolling, solvent and chemical imidization crosslinking, was proposed to prepare carbon nanofiber membranes with a chemical crosslinking structure (CNMs-CC) derived from electrospinning polyimide nanofiber membranes. The physical-chemical characteristics of CNMs-CC as freestanding anodes for lithium-ion batteries were investigated in detail, along with carbon nanofiber membranes without a crosslinking structure (CNMs) and carbon nanofiber membranes with a physical crosslinking structure (CNMs-PC) as references. Further investigation demonstrates that CNMs-CC exhibits excellent rate performance and long cycle stability, compared with CNMs and CNMs-PC. At 50 mA g-1, CNMs-CC delivers a reversible specific capacity of 495 mAh g-1. In particular, the specific capacity of CNMs-CC is still as high as 290.87 mAh g-1 and maintains 201.38 mAh g-1 after 1000 cycles at a high current density of 1 A g-1. The excellent electrochemical performance of the CNMs-CC is attributed to the unique crosslinking structure derived from the novel triple crosslinking strategy, which imparts fast electron transfer and ion diffusion kinetics, as well as a stable structure that withstands repeated impacts of ions during charging and discharging process. Therefore, CNMs-CC shows great potential to be the freestanding electrodes applied in the field of flexible lithium-ion batteries and supercapacitors owing to the optimized structure strategy and improved properties.

6.
ACS Omega ; 7(47): 43273-43282, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467912

RESUMO

Polyimide/boron nitride nanosheet (PI/BNNS) composite films have potential applications in the field of electrical devices due to the superior thermal conductivity and outstanding insulating properties of the boron nitride nanosheet. In this study, the boron nitride nanosheet (BNNS-t) was prepared by the template method using sodium chloride as the template, and B2O3 and flowing ammonia as the boron and nitrogen sources, respectively. Then, the PI/BNNS-t composite films were investigated with different loading of BNNS-t as thermally conductive fillers. The results show that BNNS-t has a high aspect ratio and a uniform lateral dimension, with a large dimension and a thin thickness, and there are a few nanosheets with angular shapes in the as-obtained BNNS-t. The synergistic effect of the above characteristics for BNNS-t is beneficial to constructing the three-dimensional heat conduction network of the PI/BNNS-t composite films, which can significantly improve the out-of-plane thermal conduction properties. And then, the out-of-plane thermal conductivity of the PI/BNNS-t composite film achieves 0.67 W m-1 K-1 at 40% loading, which is nearly 3.5 times that of the PI film.

7.
Materials (Basel) ; 12(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491995

RESUMO

In this work, the quasi-spherical ß-Si3N4 powders were synthesized via an efficient direct nitridation strategy with CaF2 as the catalytic material under NH3 atmosphere. The effect of CaF2 on phase composition and crystalline morphology was studied. CaF2 additive can accelerate the nitridation of silicon powders, and the particles of nitridation products tend to have an equiaxed structure with the CaF2 additive increasing. When 4 wt% CaF2 additive or more was added, submicron ß-Si3N4 particles with quasi-spherical morphology and eminent crystal integrity were obtained. In contrast, irregular α-Si3N4 particles appear as the main phase with less than 4 wt% CaF2 additive. The growth mechanism of Si3N4 particles was also discussed. CaxSiyOz liquid phase is crucial in the nitridation of silicon powders with CaF2 additive.

8.
Materials (Basel) ; 12(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557824

RESUMO

Surface coating modification on a polyethylene separator serves as a promising way to meet the high requirements of thermal dimensional stability and excellent electrolyte wettability for lithium ion batteries (LIBs). In this paper, we report a new type of surface modified separator by coating polyvinylidene fluoride (PVDF) organic particles on traditional microporous polyethylene (PE) separators. The PE separator coated by PVDF particles (PE-PVDF separator) has higher porosity (61.4%), better electrolyte wettability (the contact angle to water was 3.28° ± 0.21°) and superior ionic conductivity (1.53 mS/cm) compared with the bare PE separator (51.2%, 111.3° ± 0.12°, 0.55 mS/cm). On one hand, the PVDF organic polymer has excellent organic electrolyte compatibility. On the other hand, the PVDF particles contain sub-micro spheres, of which the separator can possess a large specific surface area to absorb additional electrolyte. As a result, LIBs assembled using the PE-PVDF separator showed better electrochemical performances. For example, the button cell using a PE-PVDF as the separator had a higher capacity retention rate (70.01% capacity retention after 200 cycles at 0.5 C) than the bare PE separator (62.5% capacity retention after 200 cycles at 0.5 C). Moreover, the rate capability of LIBs was greatly improved as well-especially at larger current densities such as 2 C and 5 C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA