Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(2): e2305625, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658509

RESUMO

Highly symmetrical and streamlined nanostructures possessing unique electron scattering, electron-phonon coupling, and electron confinement characteristics have attracted a lot of attention. However, the controllable synthesis of such a nanostructure with regulated shapes and sizes remains a huge challenge. In this work, a peanut-like MnO@C structure, assembled by two core-shell nanosphere is developed via a facile hydrogen ion concentration regulation strategy. Off-axis electron holography technique, charge reconstruction, and COMSOL Multiphysics simulation jointly reveal the unique electronic distribution and confirm its higher dielectric sensitive ability, which can be used as microwave absorption to deal with currently electromagnetic pollution. The results reveal that the peanut-like core-shell MnO@C exhibits great wideband properties with effective absorption bandwidth of 6.6 GHz, covering 10.8-17.2 GHz band. Inspired by this structure-induced sensitively dielectric behavior, promoting the development of symmetrical and streamlined nanostructure would be attractive for many other promising applications in the future, such as piezoelectric material and supercapacitor and electromagnetic shielding.

2.
Adv Mater ; 36(24): e2313411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469974

RESUMO

Precise manipulation of van der Waals forces within 2D atomic layers allows for exact control over electron-phonon coupling, leading to the exceptional quantum properties. However, applying this technique to diverse structures such as 3D materials is challenging. Therefore, investigating new hierarchical structures and different interlayer forces is crucial for overcoming these limitations and discovering novel physical properties. In this work, a multishelled ferromagnetic material with controllable shell numbers is developed. By strategically regulating the magnetic interactions between these shells, the magnetic properties of each shell are fine-tuned. This approach reveals distinctive magnetic characteristics including regulated magnetic domain configurations and enhanced effective fields. The nanoscale magnetic interactions between the shells are observed and analyzed, which shed light on the modified magnetic properties of each shell, enhancing the understanding and control of ferromagnetic materials. The distinctive magnetic interaction significantly boosts electromagnetic absorption at low-frequency frequencies used by fifth-generation wireless devices, outperforming ferromagnetic materials without multilayer structures by several folds. The application of magnetic interactions in materials science reveals thrilling prospects for technological and electronic innovation.

3.
ACS Appl Mater Interfaces ; 15(23): 28410-28420, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37266580

RESUMO

Intrinsically conductive polymers have attracted much attention in the electromagnetic interference (EMI) shielding field because of their high conductivity and favorable flexibility. Delocalized π-electrons migrating along the conjugated long-chain structures can form a current. Based on this special conductive mechanism, the doping process significantly influences the conductivity and EMI shielding efficiency (SE). However, it is challenging to investigate the influence of the doping process on EMI shielding performance, which would enable the optimization of dopant selection. In this study, dopant engineering was explored for controllable conductivity, EMI SE, and mechanical properties. Polypyrrole (PPy) doped with various dopants serves as a conductive coating owing to its adjustable conductivity and abundant functional groups. Elastic thermoplastic polyurethane was chosen as the porous framework because of its high tensile strength, and magnetic nanoparticles supplied the magnetic loss in the 3D network. Eventually, the composite film showed the best properties when PPy was doped with sodium p-toluenesulfonate. The film exhibited an average SE of 26.3 dB in the X band and a specific SE of 1563.17 dB cm2 g-1 with a thickness of merely 0.2 mm. This film withstood a tensile stress of 16.0 MPa, while the breaking elongation ratio reached 538.0%. After 10,000 cyclic bending, 92.3% of the EMI shielding property was retained. In summary, this study highlights the most suitable dopant for EMI shielding applications and provides a prospective alternative for advanced, flexible, and smart devices.

4.
ACS Omega ; 5(38): 24693-24699, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015486

RESUMO

The electrode, as one of the key components in supercapacitors, has a pivotal effect on the overall performances. In this work, a series of composite electrode materials are proposed via the combination of nickel aluminum layered double hydroxides (NiAl-LDHs) and carbon nanotubes (CNTs). To begin with, materials with different ratios of the two compositions are fabricated with a coprecipitation method. After that, various characterization methods indicate that the NiAl-LDH/CNT composites exhibit an irregular thin platelet structure with a well-constructed conductive network inside. Furthermore, the effect of the CNT ratio on the electrochemical property is subsequently investigated, which proves that the conductive network of CNTs is beneficial for the transport of the electrons and strengthens the platelet structure. The results show that when the amount of CNTs reaches 1.5 wt %, it can yield a high specific capacitance of 2447 F g-1 at 2 A g-1, with a good cycling stability of 90.1% after 2500 cycles, indicating high application potential in positive electrodes of pseudocapacitors. The synergistic effects of NiAl-LDHs and CNTs are thought to be the main reasons for the good properties of NiAl-LDHs/CNTs composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA