Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Chem Chem Phys ; 23(25): 13797-13807, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34075962

RESUMO

Heterostructural engineering and noble metal coupling are effective strategies to optimize semiconductor photocatalytic materials. In this work, (Ag, Mn2O3)-codecorated ZnO nanoparticles with different Mn2O3 contents (0-10 mol%) were synthesized by integrating the two strategies by a facile two-step polymer network-gel process. The photocatalytic activity of Ag/ZnO (AZM0) was significantly enhanced with the optimum Mn2O3 molar ratio of 3 mol%. The degradation efficiency of AZM3 is ∼3 times and ∼4.8 times higher than that of AZM0 for the degradation of methylene blue (MB) upon exposure to simulated sunlight and visible light, respectively. Also, this ternary nanocomposite exhibits enhanced gas sensing performance towards NO2 under ultraviolet/visible light irradiation at room temperature. The analysis of its microstructural, optical and photoelectrical characteristics suggests the synergistic coupling effects of Ag and Mn2O3, in which the significantly enhanced visible light response and hetero-interface charge carrier migration are the critical factors for the improvement of photocatalytic efficiency and gas sensing activity. Furthermore, the effects of recycling ability, the influence of the initial solution pH, the catalyst dosage and the main active species during the catalysis process on photocatalytic activity were explored. This study develops a feasible pathway to consciously construct multiheterostructures for enhancing the photocatalytic activity with great potential applications in toxic pollution abatement and noxious gas detection.

2.
Phys Chem Chem Phys ; 23(18): 10768-10779, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33978645

RESUMO

Decorating metal oxides with wide band-gap semiconductor nano-particles constitute an important approach for synthesizing nano-photocatalysts, where the photocatalytic activity is attributed to the band diagram related effective charge separation and external in-band quantum yield (EIQY). However, up to now, the correlation between the irradiation intensity and the functionalization of the in-band quantum yield has not yet been explained. In this work, by investigating the photocatalytic activity of ZnO and CuO/ZnO (CZO) nano-photocatalysts under various irradiative intensities, we show that the effective charge separation in the CuO/ZnO band alignment is sensitive to weak illumination, while ZnO exhibits a competitive photocatalytic activity with CZO under strong illumination. As a consequence, by modifying the irradiation intensity, the intrinsic ZnO can achieve a similar photocatalytic activity to that of metal oxide decorated ZnO. Besides, the optimal photocatalytic activity of CZO is found to be reachable by manipulating the pollutant concentration.

3.
Phys Chem Chem Phys ; 22(46): 27272-27279, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33227105

RESUMO

A series of ZnO-based complex architectures including Mn-doped ZnO, Ag/ZnO and Ag-decorated Mn:ZnO nanocomposites were fabricated by a facile polymer network gel method. The photocatalytic performance of the as-synthesized products was evaluated by the degradation of methylene blue (MB), methyl orange (MO) and rhodamine B (RhB) under simulated sunlight irradiation. The Mn:ZnO/Ag photocatalyst achieves the superior photodegradation efficiency, which is three times higher than that of pure ZnO and two times that of the Ag/ZnO composite. Our results demonstrate that the significantly enhanced photocatalytic properties of Mn:ZnO/Ag are due to the synergetic effects of both Mn doping and Ag decoration. The possible photocatalytic mechanism of Mn:ZnO/Ag for degradation of organic dyes is proposed. The transformation from Mn3+ to Mn2+, the increase of surface defects, and the improvement of the crystal quality are the crucial factors for the enhancement of the photocatalytic properties. This study provides an effective approach to overcome the response limitation of ZnO-based photocatalysts in the visible region and realize efficient photogenerated carrier separation.

4.
Crit Care ; 19: 195, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25925165

RESUMO

INTRODUCTION: In critical care observational studies, when clinicians administer different treatments to sicker patients, any treatment comparisons will be confounded by differences in severity of illness between patients. We sought to investigate the extent that observational studies assessing treatments are at risk of incorrectly concluding such treatments are ineffective or even harmful due to inadequate risk adjustment. METHODS: We performed Monte Carlo simulations of observational studies evaluating the effect of a hypothetical treatment on mortality in critically ill patients. We set the treatment to have either no association with mortality or to have a truly beneficial effect, but more often administered to sicker patients. We varied the strength of the treatment's true effect, strength of confounding, study size, patient population, and accuracy of the severity of illness risk-adjustment (area under the receiver operator characteristics curve, AUROC). We measured rates in which studies made inaccurate conclusions about the treatment's true effect due to confounding, and the measured odds ratios for mortality for such false associations. RESULTS: Simulated observational studies employing adequate risk-adjustment were generally able to measure a treatment's true effect. As risk-adjustment worsened, rates of studies incorrectly concluding the treatment provided no benefit or harm increased, especially when sample size was large (n = 10,000). Even in scenarios of only low confounding, studies using the lower accuracy risk-adjustors (AUROC < 0.66) falsely concluded that a beneficial treatment was harmful. Measured odds ratios for mortality of 1.4 or higher were possible when the treatment's true beneficial effect was an odds ratio for mortality of 0.6 or 0.8. CONCLUSIONS: Large observational studies confounded by severity of illness have a high likelihood of obtaining incorrect results even after employing conventionally "acceptable" levels of risk-adjustment, with large effect sizes that may be construed as true associations. Reporting the AUROC of the risk-adjustment used in the analysis may facilitate an evaluation of a study's risk for confounding.


Assuntos
Simulação por Computador , Cuidados Críticos/métodos , Estado Terminal/mortalidade , Método de Monte Carlo , Risco Ajustado/métodos , Índice de Gravidade de Doença , Simulação por Computador/estatística & dados numéricos , Fatores de Confusão Epidemiológicos , Cuidados Críticos/estatística & dados numéricos , Humanos , Estudos Observacionais como Assunto/estatística & dados numéricos , Risco Ajustado/estatística & dados numéricos
5.
Adv Sci (Weinh) ; : e2403705, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250330

RESUMO

Thermoelectric generators held great promise through energy harvesting from waste heat. Their practical application, however, is greatly constrained by poor raw material utilization and tedious processing in fabricating desired shapes. Herein, a state-of-the-art process is reported for 3D printing the half-Heusler (Nb0.88Hf0.12FeSb) thermoelectric material using laser powder bed fusion (LPBF). The multi-dimensional intra- and inter-granular defects created by this process greatly suppress thermal conductivity by providing numerous phonon scattering centers. The resulting LPBF-fabricated half-Heusler exhibits a high figure of merit ≈1.2 at 923 K and a single-leg maximum efficiency of ≈3.3% at a temperature difference (ΔT) of 371 K. Hafnium oxide nanoparticles generated during LPBF effectively prevent crack propagation, ensuring competent mechanical performance and reliable thermoelectric output. The findings highlight the significant potential of LPBF in driving the next industrial revolution of highly efficient and customizable thermoelectric materials.

6.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003531

RESUMO

The construction of heterostructured photocatalyst with an appropriate energy band structure will help realize highly efficient photo-excited charge separation. In this study, ternary CuO/CeO2/ZnO nano-particle (NP) composites were synthesized by a facile two-step sol-gel method, which exhibit significantly enhanced photocatalytic degradation performance for various organic pollutants under UV and visible light excitation. The photo-responses to both UV and visible light, as well as the visible light absorption and utilization rates of ZnO are found to be synergistically intensified by CeO2 and CuO co-coupling. The first-order kinetic constants (K) of 3%CuO/CeO2/ZnO for methylene blue (MB) degradation are ~3.9, ~4.1 and ~4.8 times higher than ZnO under UV light, visible light and simulated sunlight illumination, respectively. The roles of CuO and CeO2 in optical properties and photo-degradation under UV and visible light were explored. Besides, the photogenic holes (h+) of ZnO, CeO2, and the produced hydroxyl radicals (·OH) are proved to be the main active species under UV light. Dissimilarly, under visible light, the superoxide radicals (·O2-) formed by the reactions between oxygen molecules and the photo-generated electrons (e-) of CuO moving towards the catalysts surface are also found to be important for promoting dye decomposition. The improved photo-responses, the well-matched band structure that facilitates charge transfer processes, and the highly efficient utilization of the photo-excited carriers of the ternary nano-heterostructure are suggested to be the key factors for the remarkable enhancement of photocatalytic performance of ZnO nano-photocatalyst. This work offers a low-cost strategy to acquire highly active UV and visible light-driven photocatalyst.

7.
JAMA Netw Open ; 3(2): e200107, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32101311

RESUMO

Importance: Patients with nonvalvular atrial fibrillation at risk of stroke should receive oral anticoagulants (OAC). However, approximately 1 in 8 patients in the Global Anticoagulant Registry in the Field (GARFIELD-AF) registry are treated with antiplatelet (AP) drugs in addition to OAC, with or without documented vascular disease or other indications for AP therapy. Objective: To investigate baseline characteristics and outcomes of patients who were prescribed OAC plus AP therapy vs OAC alone. Design, Setting, and Participants: Prospective cohort study of the GARFIELD-AF registry, an international, multicenter, observational study of adults aged 18 years and older with recently diagnosed nonvalvular atrial fibrillation and at least 1 risk factor for stroke enrolled between March 2010 and August 2016. Data were extracted for analysis in October 2017 and analyzed from April 2018 to June 2019. Exposure: Participants received either OAC plus AP or OAC alone. Main Outcomes and Measures: Clinical outcomes were measured over 3 and 12 months. Outcomes were adjusted for 40 covariates, including baseline conditions and medications. Results: A total of 24 436 patients (13 438 [55.0%] male; median [interquartile range] age, 71 [64-78] years) were analyzed. Among eligible patients, those receiving OAC plus AP therapy had a greater prevalence of cardiovascular indications for AP, including acute coronary syndromes (22.0% vs 4.3%), coronary artery disease (39.1% vs 9.8%), and carotid occlusive disease (4.8% vs 2.0%). Over 1 year, patients treated with OAC plus AP had significantly higher incidence rates of stroke (adjusted hazard ratio [aHR], 1.49; 95% CI, 1.01-2.20) and any bleeding event (aHR, 1.41; 95% CI, 1.17-1.70) than those treated with OAC alone. These patients did not show evidence of reduced all-cause mortality (aHR, 1.22; 95% CI, 0.98-1.51). Risk of acute coronary syndrome was not reduced in patients taking OAC plus AP compared with OAC alone (aHR, 1.16; 95% CI, 0.70-1.94). Patients treated with OAC plus AP also had higher rates of all clinical outcomes than those treated with OAC alone over the short term (3 months). Conclusions and Relevance: This study challenges the practice of coprescribing OAC plus AP unless there is a clear indication for adding AP to OAC therapy in newly diagnosed atrial fibrillation.


Assuntos
Anticoagulantes/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Idoso , Quimioterapia Combinada/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA