Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(7): 231216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076366

RESUMO

Anatase TiO2 has evolved into one of the most attractive materials for gas sensing owing to its strong oxidation activity and excellent sensing properties. In this study, we prepared Pt and bamboo charcoal co-modified nano-TiO2 using a one-pot hydrothermal process and applied it to detect formaldehyde. The successful incorporation of the precious metal Pt and bamboo charcoal onto TiO2 was confirmed by scanning electron microscope, transmission electron microscopy, energy dispersive spectrometer, X-ray diffraction and X-ray photoelectron spectroscopy. Detailed analysis revealed a homogeneous distribution of Pt nanoparticles and bamboo charcoal on the TiO2 surface, which significantly improved the surface area and facilitated gas adsorption. These modifiers significantly enhanced the response of TiO2 to formaldehyde, for instance, the response signal increased fourfold, while the response time decreased from 91 to 68 s. The sample with 0.5@Pt and 0.5@C bamboo charcoal performed the best, showcasing the synergistic effect of metal nanoparticles and carbonaceous materials on gas-sensing properties. Our work highlighted the potential of using biomass-derived carbon to enhance the detection of formaldehyde and demonstrated the importance of material characteristics in designing effective gas sensors.

2.
Materials (Basel) ; 17(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473518

RESUMO

The aminated sodium lignosulfonate (AELS) was prepared through a Mannich reaction and characterized via FT-IR, TG, SEM and XPS in this study. Subsequently, the adsorption capacity of AELS for methyl blue (MB) was evaluated under various conditions such as pH, adsorbent dosage, contact time, initial concentration and temperature. The adsorption kinetics, isotherms and thermodynamics of AELS for methyl blue were investigated and analyzed. The results were found to closely adhere to the pseudo-second-order kinetic model and Langmuir isotherm model, suggesting a single-molecular-layer adsorption process. Notably, the maximum adsorption capacity of AELS for methyl blue (153.42 mg g-1) was achieved under the specified conditions (T = 298 K, MAELS = 0.01 g, pH = 6, VMB = 25 mL, C0 = 300 mg L-1). The adsorption process was determined to be spontaneous and endothermic. Following five adsorption cycles, the adsorption capacity exhibited a minimal reduction from 118.99 mg g-1 to 114.33 mg g-1, indicating good stability. This study contributes to the advancement of utilizing natural resources effectively and sustainably.

3.
RSC Adv ; 14(35): 25619-25628, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39148761

RESUMO

This research focused on utilizing banana peel as the primary material for producing mesoporous biomass charcoal through one-step potassium hydroxide activation. Subsequently, the biomass charcoal underwent high-temperature calcination with varying impregnation ratios of KOH : BC for different durations in tubular furnaces set at different temperatures. The resultant biomass charcoal was then subjected to hydrothermal treatment with FeCl3·6H2O to produce biochar/iron oxide composites. The adsorption capabilities of these composites towards methylene blue (MB) were examined under various conditions, including pH (ranging from 3 to 12), temperature variations, and initial MB concentrations (ranging from 50 to 400 mg L-1). The adsorption behavior aligned with the Langmuir model and demonstrated quasi-secondary kinetics. After five adsorption cycles, the capacity decreased from 618.64 mg g-1 to 497.18 mg g-1, indicating considerable stability. Notably, Fe3O4-N-BC exhibited exceptional MB adsorption performance.

4.
RSC Adv ; 14(16): 10953-10961, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577433

RESUMO

Purine nucleoside ester is one of the derivatives of purine nucleoside, which has antiviral and anticancer activities. In this work, a continuous flow synthesis of purine nucleoside esters catalyzed by lipase TL IM from Thermomyces lanuginosus was successfully achieved. Various parameters including solvent, reaction temperature, reaction time/flow rate and substrate ratio were investigated. The best yields were obtained with a continuous flow microreactor for 35 min at 50 °C with the substrate ratio of 1 : 5 (nucleosides to vinyl esters) in the solvent of tert-amyl alcohol. 12 products were efficiently synthesized with yields of 78-93%. Here we reported for the first time the use of lipase TL IM from Thermomyces lanuginosus in the synthesis of purine nucleoside esters. The significant advantages of this methodology are a green solvent and mild conditions, a simple work-up procedure and the highly reusable biocatalyst. This research provides a new technique for rapid synthesis of anticancer and antiviral nucleoside drugs and is helpful for further screening of drug activity.

5.
RSC Adv ; 14(1): 131-138, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173597

RESUMO

An increasing number of studies have shown that many nicotinamide derivatives exhibited extensive biological activities, such as anti-inflammatory and antitumor activity. In this paper, a green, concise synthesis of nicotinamide derivatives in sustainable continuous-flow microreactors catalysed by Novozym® 435 from Candida antarctica has been developed. Application of an easily obtainable and reusable lipase in the synthesis of nicotinamide derivatives from methyl nicotinate and amines/benzylamines reacted for 35 min at 50 °C led to high product yields (81.6-88.5%). Environmentally friendly tert-amyl alcohol was applied as a reaction medium. Substantially shorter reaction times as well as a significant increase in the product yield were obtained as compared to the batch process. This innovative approach provides a promising green, efficient and rapid synthesis strategy for pharmaceutical synthesis and further activity research of novel nicotinamide derivatives.

6.
Nanomaterials (Basel) ; 13(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133048

RESUMO

Cellulose-based carbon (CBC) is widely known for its porous structure and high specific surface area and is liable to adsorb gas molecules and macromolecular pollutants. However, the application of CBC in gas sensing has been little studied. In this paper, a ZnO/CBC heterojunction was formed by means of simple co-precipitation and high-temperature carbonization. As a new ammonia sensor, the prepared ZnO/CBC sensor can detect ammonia that the previous pure ZnO ammonia sensor cannot at room temperature. It has a great gas sensing response, stability, and selectivity to an ammonia concentration of 200 ppm. This study provides a new idea for the design and synthesis of biomass carbon-metal oxide composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA