RESUMO
Designing materials capable of adapting their mechanical properties in response to external stimuli is the key to preventing failure and extending their service life. However, existing mechanically adaptive polymers are hindered by limitations such as inadequate load-bearing capacity, difficulty in achieving reversible changes, high cost, and a lack of multiple responsiveness. Herein, we address these challenges using dynamic coordination bonds. A new type of mechanically adaptive material with both rate- and temperature-responsiveness was developed. Owing to the stimuli-responsiveness of the coordination equilibria, the prepared polymers, PBMBD-Fe and PBMBD-Co, exhibit mechanically adaptive properties, including temperature-sensitive strength modulation and rate-dependent impact hardening. Benefitting from the dynamic nature of the coordination bonds, the polymers exhibited impressive energy dissipation, damping capacity (loss factors of 1.15 and 2.09 at 1.0â Hz), self-healing, and 3D printing abilities, offering durable and customizable impact resistance and protective performance. The development of impact-resistant materials with comprehensive properties has potential applications in the sustainable and intelligent protection fields.
RESUMO
Brønsted base catalyzed C-C bond formation reactions have been extensively utilized as reliable, efficient, and atom economical methods in organic synthesis. However, the electrophiles were mostly limited to polar ones such as imines, carbonyl compounds, α,ß-unsaturated compounds, styrenes and conjugated dienes. The use of α-alkenes as electrophiles in the C-C bond formation reactions always needs transition metal catalysts. Herein, we reported an alkyl lithium-catalyzed benzylic C-H bond addition of alkyl pyridines to α-alkenes. The alkyl lithium catalyst displayed quite different selectivity from those of transition metal catalysts.
RESUMO
Polymer materials formed by conventional metal-ligand bonds have very low branch functionality, the crosslinker of such polymer usually consists of 2-4 polymer chains and a single metal ion. Thus, these materials are weak, soft, humidity-sensitive, and unable to withstand their shape under long-term service. In this work, a new hyperbranched metal-organic cluster (MOC) crosslinker containing up to 16 vinyl groups is prepared by a straightforward coordination reaction. Compared with the current typical synthesis of metal-organic cages (MOCs) or metal-organic-polyhedra (MOP) crosslinkers with complex operations and low yield, the preparation of the MOC is simple and gram-scale. Thus, MOC can serve as a high-connectivity crosslinker to construct hyper-crosslinked polymer networks. The as-prepared elastomer exhibits mechanical robustness, creep-resistance, and humidity-stability. Besides, the elastomer possesses self-healing and recyclability at mild condition as well as fluorescence stability. These impressive comprehensive properties are proven to originate from the hyper-crosslinked topological structure and microphase-separated morphology. The MOC-driven hyper-crosslinked elastomers provide a new solution for the construction of mechanically robust, durable, and multifunctional polymers.
RESUMO
Amides are a fundamental and widespread functional group, and are usually considered as poor electrophiles owing to resonance stabilization of the amide bond. Various approaches have been developed to address challenges in amide transformations. Nonetheless, most methods use activated amides, organometallic reagents or transition metal catalysts. Here, we report the direct alkylation of N,N-dialkyl benzamides with methyl sulfides promoted by the readily available base LDA (lithium diisopropylamide). This approach successfully achieves an efficient and selective synthesis of α-sulfenylated ketones without using transition-metal catalysts or organometallic reagents. Preliminary mechanism studies reveal that the deprotonative aroylation of methyl sulfides is promoted by the directed ortho-lithiation of the tertiary benzamide with LDA.